17. Geospatial Vector Data in Python#

Attribution: Parts of this tutorial are developed based on the content from the following great sources: Vector data in Python; and Introduction to GeoPandas.

In this lecture, you will learn how to interact with geospatial vector data in Python. In this lecture, our focus is on smaller datasets, and in the next one we will learn how to handle large datasets for scalable analysis.

We will use the GeoPandas package to open, manipulate and write vector datasets.

You can access this notebook (in a Docker image) on this GitHub repo.

17.1. Intro to GeoPandas#

GeoPandas extends the popular pandas library for data analysis to geospatial applications. The main pandas objects (the Series and the DataFrame) are expanded to GeoPandas objects (GeoSeries and GeoDataFrame). This extension is implemented by including geometric types, represented in Python using the shapely library, and by providing dedicated methods for spatial operations (union, intersection, etc.). The relationship between Series, DataFrame, GeoSeries and GeoDataFrame can be briefly explained as follow:

  • A Series is a one-dimensional array with axis, holding any data type (integers, strings, floating-point numbers, Python objects, etc.)

  • A DataFrame is a two-dimensional labeled data structure with columns of potentially different types.

  • A GeoSeries is a Series object designed to store shapely geometry objects.

  • A GeoDataFrame is an extened pandas.DataFrame, which has a column with geometry objects, and this column is a GeoSeries.

Each GeoSeries can contain any geometry type (you can even mix them within a single DataFrame) and has a GeoSeries.crs attribute, which stores information about the projection. Therefore, each GeoSeries in a GeoDataFrame can be in a different projection, allowing you to have, for example, multiple versions (different projections) of the same geometry.

Note: Only one GeoSeries in a GeoDataFrame is considered the active geometry, which means that all geometric operations applied to a GeoDataFrame operate on the active column.

import matplotlib.pyplot as plt
import geopandas as gpd
from cartopy import crs as ccrs
import geodatasets
import pandas as pd

17.2. Reading Files#

In this section, we use the geodatasets package to find and fetch example spatial datasets. geodatasets contains an API on top of a JSON with metadata of externally hosted datasets containing geospatial information useful for illustrative and educational purposes.

geodatasets.data
geodatasets.Bunch
5 items
  • geodatasets.Bunch
    53 items
    • geodatasets.Dataset
      geoda.airbnb
      url
      https://geodacenter.github.io/data-and-lab//data/airbnb.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Airbnb rentals, socioeconomics, and crime in Chicago
      geometry_type
      Polygon
      nrows
      77
      ncols
      21
      details
      https://geodacenter.github.io/data-and-lab//airbnb/
      hash
      a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824
      filename
      airbnb.zip
    • geodatasets.Dataset
      geoda.atlanta
      url
      https://geodacenter.github.io/data-and-lab//data/atlanta_hom.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Atlanta, GA region homicide counts and rates
      geometry_type
      Polygon
      nrows
      90
      ncols
      24
      details
      https://geodacenter.github.io/data-and-lab//atlanta_old/
      hash
      a33a76e12168fe84361e60c88a9df4856730487305846c559715c89b1a2b5e09
      filename
      atlanta_hom.zip
      members
      ['atlanta_hom/atl_hom.geojson']
    • geodatasets.Dataset
      geoda.cars
      url
      https://geodacenter.github.io/data-and-lab//data/Abandoned_Vehicles_Map.csv
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2011 abandoned vehicles in Chicago (311 complaints).
      geometry_type
      Point
      nrows
      137867
      ncols
      21
      details
      https://geodacenter.github.io/data-and-lab//1-source-and-description/
      hash
      6a0b23bc7eda2dcf1af02d43ccf506b24ca8d8c6dc2fe86a2a1cc051b03aae9e
      filename
      Abandoned_Vehicles_Map.csv
    • geodatasets.Dataset
      geoda.charleston1
      url
      https://geodacenter.github.io/data-and-lab//data/CharlestonMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Charleston, SC MSA and counties
      geometry_type
      Polygon
      nrows
      117
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//charleston-1_old/
      hash
      4a4fa9c8dd4231ae0b2f12f24895b8336bcab0c28c48653a967cffe011f63a7c
      filename
      CharlestonMSA.zip
      members
      ['CharlestonMSA/sc_final_census2.gpkg']
    • geodatasets.Dataset
      geoda.charleston2
      url
      https://geodacenter.github.io/data-and-lab//data/CharlestonMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Charleston, SC MSA
      geometry_type
      Polygon
      nrows
      42
      ncols
      60
      details
      https://geodacenter.github.io/data-and-lab//charleston2/
      hash
      056d5d6e236b5bd95f5aee26c77bbe7d61bd07db5aaf72866c2f545205c1d8d7
      filename
      CharlestonMSA2.zip
      members
      ['CharlestonMSA2/CharlestonMSA2.gpkg']
    • geodatasets.Dataset
      geoda.chicago_health
      url
      https://geodacenter.github.io/data-and-lab//data/comarea.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Chicago Health + Socio-Economics
      geometry_type
      Polygon
      nrows
      77
      ncols
      87
      details
      https://geodacenter.github.io/data-and-lab//comarea_vars/
      hash
      4e872adb552786eae2fcd745524696e5e4cd33cc9a6c032471c0e75328871401
      filename
      comarea.zip
    • geodatasets.Dataset
      geoda.chicago_commpop
      url
      https://geodacenter.github.io/data-and-lab//data/chicago_commpop.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Chicago Community Area Population Percent Change for 2000 and 2010
      geometry_type
      Polygon
      nrows
      77
      ncols
      9
      details
      https://geodacenter.github.io/data-and-lab//commpop/
      hash
      1dbebb50c8ea47e2279ea819ef64ba793bdee2b88e4716bd6c6ec0e0d8e0e05b
      filename
      chicago_commpop.zip
      members
      ['chicago_commpop/chicago_commpop.geojson']
    • geodatasets.Dataset
      geoda.chile_labor
      url
      https://geodacenter.github.io/data-and-lab//data/flma.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Labor Markets in Chile (1982-2002)
      geometry_type
      Polygon
      nrows
      64
      ncols
      140
      details
      https://geodacenter.github.io/data-and-lab//FLMA/
      hash
      4777072268d0127b3d0be774f51d0f66c15885e9d3c92bc72c641a72f220796c
      filename
      flma.zip
      members
      ['flma/FLMA.geojson']
    • geodatasets.Dataset
      geoda.cincinnati
      url
      https://geodacenter.github.io/data-and-lab//data/walnuthills_updated.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2008 Cincinnati Crime + Socio-Demographics
      geometry_type
      Polygon
      nrows
      457
      ncols
      73
      details
      https://geodacenter.github.io/data-and-lab//walnut_hills/
      hash
      d6871dd688bd14cf4710a218d721d34f6574456f2a14d5c5cfe5a92054ee9763
      filename
      walnuthills_updated.zip
      members
      ['walnuthills_updated']
    • geodatasets.Dataset
      geoda.cleveland
      url
      https://geodacenter.github.io/data-and-lab//data/cleveland.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2015 sales prices of homes in Cleveland, OH.
      geometry_type
      Point
      nrows
      205
      ncols
      10
      details
      https://geodacenter.github.io/data-and-lab//clev_sls_154_core/
      hash
      49aeba03eb06bf9b0d9cddd6507eb4a226b7c7a7561145562885c5cddfaeaadf
      filename
      cleveland.zip
    • geodatasets.Dataset
      geoda.grid100
      url
      https://geodacenter.github.io/data-and-lab//data/grid100.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Grid with simulated variables
      geometry_type
      Polygon
      nrows
      100
      ncols
      37
      details
      https://geodacenter.github.io/data-and-lab//grid100/
      hash
      5702ba39606044f71d53ae6a83758b81332bd3aa216b7b7b6e1c60dd0e72f476
      filename
      grid100.zip
      members
      ['grid100/grid100s.gpkg']
    • geodatasets.Dataset
      geoda.groceries
      url
      https://geodacenter.github.io/data-and-lab//data/grocery.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2015 Chicago supermarkets
      geometry_type
      Point
      nrows
      148
      ncols
      8
      details
      https://geodacenter.github.io/data-and-lab//chicago_sup_vars/
      hash
      ead10e53b21efcaa29b798428b93ba2a1c0ba1b28f046265c1737712fa83f88a
      filename
      grocery.zip
      members
      ['grocery/chicago_sup.shp', 'grocery/chicago_sup.dbf', 'grocery/chicago_sup.shx', 'grocery/chicago_sup.prj']
    • geodatasets.Dataset
      geoda.guerry
      url
      https://geodacenter.github.io/data-and-lab//data/guerry.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Mortal statistics of France (Guerry, 1833)
      geometry_type
      Polygon
      nrows
      85
      ncols
      24
      details
      https://geodacenter.github.io/data-and-lab//Guerry/
      hash
      80d2b355ad3340fcffa0a28e5cec0698af01067f8059b1a60388d200a653b3e8
      filename
      guerry.zip
      members
      ['guerry/guerry.shp', 'guerry/guerry.dbf', 'guerry/guerry.shx', 'guerry/guerry.prj']
    • geodatasets.Dataset
      geoda.health
      url
      https://geodacenter.github.io/data-and-lab//data/income_diversity.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Health, Income + Diversity
      geometry_type
      Polygon
      nrows
      3984
      ncols
      65
      details
      https://geodacenter.github.io/data-and-lab//co_income_diversity_variables/
      hash
      eafee1063040258bc080e7b501bdf1438d6e45ba208954d8c2e1a7562142d0a7
      filename
      income_diversity.zip
      members
      ['income_diversity/income_diversity.shp', 'income_diversity/income_diversity.dbf', 'income_diversity/income_diversity.shx', 'income_diversity/income_diversity.prj']
    • geodatasets.Dataset
      geoda.health_indicators
      url
      https://geodacenter.github.io/data-and-lab//data/healthIndicators.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Chicago Health Indicators (2005-11)
      geometry_type
      Polygon
      nrows
      77
      ncols
      32
      details
      https://geodacenter.github.io/data-and-lab//healthindicators-variables/
      hash
      b43683245f8fc3b4ab69ffa75d2064920a1a91dc76b9dcc08e288765ba0c94f3
      filename
      healthIndicators.zip
    • geodatasets.Dataset
      geoda.hickory1
      url
      https://geodacenter.github.io/data-and-lab//data/HickoryMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Hickory, NC MSA and counties
      geometry_type
      Polygon
      nrows
      68
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//hickory1/
      hash
      4c0804608d303e6e44d51966bb8927b1f5f9e060a9b91055a66478b9039d2b44
      filename
      HickoryMSA.zip
      members
      ['HickoryMSA/nc_final_census2.geojson']
    • geodatasets.Dataset
      geoda.hickory2
      url
      https://geodacenter.github.io/data-and-lab//data/HickoryMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Hickory, NC MSA
      geometry_type
      Polygon
      nrows
      29
      ncols
      56
      details
      https://geodacenter.github.io/data-and-lab//hickory2/
      hash
      5e9498e1ff036297c3eea3cc42ac31501680a43b50c71b486799ef9021679d07
      filename
      HickoryMSA2.zip
      members
      ['HickoryMSA2/HickoryMSA2.geojson']
    • geodatasets.Dataset
      geoda.home_sales
      url
      https://geodacenter.github.io/data-and-lab//data/kingcounty.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2014-15 Home Sales in King County, WA
      geometry_type
      Point
      nrows
      21613
      ncols
      22
      details
      https://geodacenter.github.io/data-and-lab//KingCounty-HouseSales2015/
      hash
      b979f0eb2cef6ebd2c761d552821353f795635eb8db53a95f2815fc46e1f644c
      filename
      kingcounty.zip
      members
      ['kingcounty/kc_house.shp', 'kingcounty/kc_house.dbf', 'kingcounty/kc_house.shx', 'kingcounty/kc_house.prj']
    • geodatasets.Dataset
      geoda.houston
      url
      https://geodacenter.github.io/data-and-lab//data/houston_hom.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Houston, TX region homicide counts and rates
      geometry_type
      Polygon
      nrows
      52
      ncols
      24
      details
      https://geodacenter.github.io/data-and-lab//houston/
      hash
      d3167fd150a1369d9a32b892d3b2a8747043d3d382c3dd81e51f696b191d0d15
      filename
      houston_hom.zip
      members
      ['houston_hom/hou_hom.geojson']
    • geodatasets.Dataset
      geoda.juvenile
      url
      https://geodacenter.github.io/data-and-lab//data/juvenile.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Cardiff juvenile delinquent residences
      geometry_type
      Point
      nrows
      168
      ncols
      4
      details
      https://geodacenter.github.io/data-and-lab//juvenile/
      hash
      811cfcfa613578214d907bfbdd396c6e02261e5cda6d56b25a6f961148de961c
      filename
      juvenile.zip
      members
      ['juvenile/juvenile.shp', 'juvenile/juvenile.shx', 'juvenile/juvenile.dbf']
    • geodatasets.Dataset
      geoda.lansing1
      url
      https://geodacenter.github.io/data-and-lab//data/LansingMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Lansing, MI MSA and counties
      geometry_type
      Polygon
      nrows
      117
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//lansing1/
      hash
      724ce3d889fa50e7632d16200cf588d40168d49adaf5bca45049dc1b3758bde1
      filename
      LansingMSA.zip
      members
      ['LansingMSA/mi_final_census2.geojson']
    • geodatasets.Dataset
      geoda.lansing2
      url
      https://geodacenter.github.io/data-and-lab//data/LansingMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Lansing, MI MSA
      geometry_type
      Polygon
      nrows
      46
      ncols
      56
      details
      https://geodacenter.github.io/data-and-lab//lansing2/
      hash
      7657c05d3bd6090c4d5914cfe5aaf01f694601c1e0c29bc3ecbe9bc523662303
      filename
      LansingMSA2.zip
      members
      ['LansingMSA2/LansingMSA2.geojson']
    • geodatasets.Dataset
      geoda.lasrosas
      url
      https://geodacenter.github.io/data-and-lab//data/lasrosas.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Corn yield, fertilizer and field data for precision agriculture, Argentina, 1999
      geometry_type
      Polygon
      nrows
      1738
      ncols
      35
      details
      https://geodacenter.github.io/data-and-lab//lasrosas/
      hash
      038d0e82203f2875b50499dbd8498ca9c762ebd8003b2f2203ebc6acada8f8fd
      filename
      lasrosas.zip
      members
      ['lasrosas/rosas1999.gpkg']
    • geodatasets.Dataset
      geoda.liquor_stores
      url
      https://geodacenter.github.io/data-and-lab//data/liquor.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2015 Chicago Liquor Stores
      geometry_type
      Point
      nrows
      571
      ncols
      3
      details
      https://geodacenter.github.io/data-and-lab//liq_chicago/
      hash
      6a483a6a7066a000bc97bfe71596cf28834d3088fbc958455b903a0938b3b530
      filename
      liquor.zip
      members
      ['liq_Chicago.shp', 'liq_Chicago.dbf', 'liq_Chicago.shx', 'liq_Chicago.prj']
    • geodatasets.Dataset
      geoda.malaria
      url
      https://geodacenter.github.io/data-and-lab//data/malariacolomb.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Malaria incidence and population (1973, 95, 93 censuses and projections until 2005)
      geometry_type
      Polygon
      nrows
      1068
      ncols
      51
      details
      https://geodacenter.github.io/data-and-lab//colomb_malaria/
      hash
      ca77477656829833a4e3e384b02439632fa28bb577610fe5aef9e0b094c41a95
      filename
      malariacolomb.zip
      members
      ['malariacolomb/colmunic.gpkg']
    • geodatasets.Dataset
      geoda.milwaukee1
      url
      https://geodacenter.github.io/data-and-lab//data/MilwaukeeMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Milwaukee, WI MSA
      geometry_type
      Polygon
      nrows
      417
      ncols
      35
      details
      https://geodacenter.github.io/data-and-lab//milwaukee1/
      hash
      bf3c9617c872db26ea56f20e82a449f18bb04d8fb76a653a2d3842d465bc122c
      filename
      MilwaukeeMSA.zip
      members
      ['MilwaukeeMSA/wi_final_census2_random4.gpkg']
    • geodatasets.Dataset
      geoda.milwaukee2
      url
      https://geodacenter.github.io/data-and-lab//data/MilwaukeeMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Milwaukee, WI MSA
      geometry_type
      Polygon
      nrows
      83
      ncols
      60
      details
      https://geodacenter.github.io/data-and-lab//milwaukee2/
      hash
      7f74212d63addb9ab84fac9447ee898498c8fafc284edcffe1f1ac79c2175d60
      filename
      MilwaukeeMSA2.zip
      members
      ['MilwaukeeMSA2/MilwaukeeMSA2.gpkg']
    • geodatasets.Dataset
      geoda.ncovr
      url
      https://geodacenter.github.io/data-and-lab//data/ncovr.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      US county homicides 1960-1990
      geometry_type
      Polygon
      nrows
      3085
      ncols
      70
      details
      https://geodacenter.github.io/data-and-lab//ncovr/
      hash
      e8cb04e6da634c6cd21808bd8cfe4dad6e295b22e8d40cc628e666887719cfe9
      filename
      ncovr.zip
      members
      ['ncovr/NAT.gpkg']
    • geodatasets.Dataset
      geoda.natregimes
      url
      https://geodacenter.github.io/data-and-lab//data/natregimes.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      NCOVR with regimes (book/PySAL)
      geometry_type
      Polygon
      nrows
      3085
      ncols
      74
      details
      https://geodacenter.github.io/data-and-lab//natregimes/
      hash
      431d0d95ffa000692da9319e6bd28701b1156f7b8e716d4bfcd1e09b6e357918
      filename
      natregimes.zip
    • geodatasets.Dataset
      geoda.ndvi
      url
      https://geodacenter.github.io/data-and-lab//data/ndvi.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Normalized Difference Vegetation Index grid
      geometry_type
      Polygon
      nrows
      49
      ncols
      8
      details
      https://geodacenter.github.io/data-and-lab//ndvi/
      hash
      a89459e50a4495c24ead1d284930467ed10eb94829de16a693a9fa89dea2fe22
      filename
      ndvi.zip
      members
      ['ndvi/ndvigrid.gpkg']
    • geodatasets.Dataset
      geoda.nepal
      url
      https://geodacenter.github.io/data-and-lab//data/nepal.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Health, poverty and education indicators for Nepal districts
      geometry_type
      Polygon
      nrows
      75
      ncols
      62
      details
      https://geodacenter.github.io/data-and-lab//nepal/
      hash
      d7916568fe49ff258d0f03ac115e68f64cdac572a9fd2b29de2d70554ac2b20d
      filename
      nepal.zip
    • geodatasets.Dataset
      geoda.nyc
      url
      https://geodacenter.github.io/data-and-lab///data/nyc.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Demographic and housing data for New York City subboroughs, 2002-09
      geometry_type
      Polygon
      nrows
      55
      ncols
      35
      details
      https://geodacenter.github.io/data-and-lab//nyc/
      hash
      a67dff2f9e6da9e11737e6be5a16e1bc33954e2c954332d68bcbf6ff7203702b
      filename
      nyc.zip
    • geodatasets.Dataset
      geoda.nyc_earnings
      url
      https://geodacenter.github.io/data-and-lab//data/lehd.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Block-level Earnings in NYC (2002-14)
      geometry_type
      Polygon
      nrows
      108487
      ncols
      71
      details
      https://geodacenter.github.io/data-and-lab//LEHD_Data/
      hash
      771fe11e59a16d4c15c6471d9a81df5e9c9bda5ef0a207e77d8ff21b2c16891b
      filename
      lehd.zip
    • geodatasets.Dataset
      geoda.nyc_education
      url
      https://geodacenter.github.io/data-and-lab//data/nyc_2000Census.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      NYC Education (2000)
      geometry_type
      Polygon
      nrows
      2216
      ncols
      57
      details
      https://geodacenter.github.io/data-and-lab//NYC-Census-2000/
      hash
      ecdf342654415107911291a8076c1685bd2c8a08d8eaed3ce9c3e9401ef714f2
      filename
      nyc_2000Census.zip
    • geodatasets.Dataset
      geoda.nyc_neighborhoods
      url
      https://geodacenter.github.io/data-and-lab//data/nycnhood_acs.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Demographics for New York City neighborhoods
      geometry_type
      Polygon
      nrows
      195
      ncols
      99
      details
      https://geodacenter.github.io/data-and-lab//NYC-Nhood-ACS-2008-12/
      hash
      aeb75fc5c95fae1088093827fca69928cee3ad27039441bb35c03013d2ee403f
      filename
      nycnhood_acs.zip
    • geodatasets.Dataset
      geoda.orlando1
      url
      https://geodacenter.github.io/data-and-lab//data/OrlandoMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Orlando, FL MSA and counties
      geometry_type
      Polygon
      nrows
      328
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//orlando1/
      hash
      e98ea5b9ffaf3e421ed437f665c739d1e92d9908e2b121c75ac02ecf7de2e254
      filename
      OrlandoMSA.zip
      members
      ['OrlandoMSA/orlando_final_census2.gpkg']
    • geodatasets.Dataset
      geoda.orlando2
      url
      https://geodacenter.github.io/data-and-lab//data/OrlandoMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Orlando, FL MSA
      geometry_type
      Polygon
      nrows
      94
      ncols
      60
      details
      https://geodacenter.github.io/data-and-lab//orlando2/
      hash
      4cd8c3469cb7edea5f0fb615026192e12b1d4b50c22b28345adf476bc85d0f03
      filename
      OrlandoMSA2.zip
      members
      ['OrlandoMSA2/OrlandoMSA2.gpkg']
    • geodatasets.Dataset
      geoda.oz9799
      url
      https://geodacenter.github.io/data-and-lab//data/oz9799.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Monthly ozone data, 1997-99
      geometry_type
      Point
      nrows
      30
      ncols
      78
      details
      https://geodacenter.github.io/data-and-lab//oz96/
      hash
      1ecc7c46f5f42af6057dedc1b73f56b576cb9716d2c08d23cba98f639dfddb82
      filename
      oz9799.zip
      members
      ['oz9799/oz9799.csv']
    • geodatasets.Dataset
      geoda.phoenix_acs
      url
      https://geodacenter.github.io/data-and-lab//data/phx2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Phoenix American Community Survey Data (2010, 5-year averages)
      geometry_type
      Polygon
      nrows
      985
      ncols
      18
      details
      https://geodacenter.github.io/data-and-lab//phx/
      hash
      b2f6e196bacb6f3fe1fc909af482e7e75b83d1f8363fc73038286364c13334ee
      filename
      phx2.zip
      members
      ['phx/phx.gpkg']
    • geodatasets.Dataset
      geoda.police
      url
      https://geodacenter.github.io/data-and-lab//data/police.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Police expenditures Mississippi counties
      geometry_type
      Polygon
      nrows
      82
      ncols
      22
      details
      https://geodacenter.github.io/data-and-lab//police/
      hash
      596270d62dea8207001da84883ac265591e5de053f981c7491e7b5c738e9e9ff
      filename
      police.zip
      members
      ['police/police.gpkg']
    • geodatasets.Dataset
      geoda.sacramento1
      url
      https://geodacenter.github.io/data-and-lab//data/sacramento.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Sacramento MSA
      geometry_type
      Polygon
      nrows
      403
      ncols
      32
      details
      https://geodacenter.github.io/data-and-lab//sacramento1/
      hash
      72ddeb533cf2917dc1f458add7c6042b93c79b31316ae2d22f1c855a9da275f9
      filename
      sacramento.zip
      members
      ['sacramento/sacramentot2.gpkg']
    • geodatasets.Dataset
      geoda.sacramento2
      url
      https://geodacenter.github.io/data-and-lab//data/SacramentoMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Sacramento MSA
      geometry_type
      Polygon
      nrows
      125
      ncols
      59
      details
      https://geodacenter.github.io/data-and-lab//sacramento2/
      hash
      3f6899efd371804ea8bfaf3cdfd3ed4753ea4d009fed38a57c5bbf442ab9468b
      filename
      SacramentoMSA2.zip
      members
      ['SacramentoMSA2/SacramentoMSA2.gpkg']
    • geodatasets.Dataset
      geoda.savannah1
      url
      https://geodacenter.github.io/data-and-lab//data/SavannahMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Savannah, GA MSA and counties
      geometry_type
      Polygon
      nrows
      77
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//savannah1/
      hash
      df48c228776d2122c38935b2ebbf4cbb90c0bacc68df01161e653aab960e4208
      filename
      SavannahMSA.zip
      members
      ['SavannahMSA/ga_final_census2.gpkg']
    • geodatasets.Dataset
      geoda.savannah2
      url
      https://geodacenter.github.io/data-and-lab//data/SavannahMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Savannah, GA MSA
      geometry_type
      Polygon
      nrows
      24
      ncols
      60
      details
      https://geodacenter.github.io/data-and-lab//savannah2/
      hash
      5b22b84a8665434cb91e800a039337f028b888082b8ef7a26d77eb6cc9aea8c1
      filename
      SavannahMSA2.zip
      members
      ['SavannahMSA2/SavannahMSA2.gpkg']
    • geodatasets.Dataset
      geoda.seattle1
      url
      https://geodacenter.github.io/data-and-lab//data/SeattleMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Seattle, WA MSA and counties
      geometry_type
      Polygon
      nrows
      664
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//seattle1/
      hash
      46fb75a30f0e7963e6108bdb19af4d7db4c72c3d5a020025cafa528c96e09daa
      filename
      SeattleMSA.zip
      members
      ['SeattleMSA/wa_final_census2.gpkg']
    • geodatasets.Dataset
      geoda.seattle2
      url
      https://geodacenter.github.io/data-and-lab//data/SeattleMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Seattle, WA MSA
      geometry_type
      Polygon
      nrows
      145
      ncols
      60
      details
      https://geodacenter.github.io/data-and-lab//seattle2/
      hash
      3dac2fa5b8c8dfa9dd5273a85de7281e06e18ab4f197925607f815f4e44e4d0c
      filename
      SeattleMSA2.zip
      members
      ['SeattleMSA2/SeattleMSA2.gpkg']
    • geodatasets.Dataset
      geoda.sids
      url
      https://geodacenter.github.io/data-and-lab//data/sids.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      North Carolina county SIDS death counts
      geometry_type
      Polygon
      nrows
      100
      ncols
      15
      details
      https://geodacenter.github.io/data-and-lab//sids/
      hash
      e2f7b210b9a57839423fd170e47c02cf7a2602a480a1036bb0324e1112a4eaab
      filename
      sids.zip
      members
      ['sids/sids.gpkg']
    • geodatasets.Dataset
      geoda.sids2
      url
      https://geodacenter.github.io/data-and-lab//data/sids2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      North Carolina county SIDS death counts and rates
      geometry_type
      Polygon
      nrows
      100
      ncols
      19
      details
      https://geodacenter.github.io/data-and-lab//sids2/
      hash
      b5875ffbdb261e6fa75dc4580d67111ef1434203f2d6a5d63ffac16db3a14bd0
      filename
      sids2.zip
      members
      ['sids2/sids2.gpkg']
    • geodatasets.Dataset
      geoda.south
      url
      https://geodacenter.github.io/data-and-lab//data/south.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      US Southern county homicides 1960-1990
      geometry_type
      Polygon
      nrows
      1412
      ncols
      70
      details
      https://geodacenter.github.io/data-and-lab//south/
      hash
      8f151d99c643b187aad37cfb5c3212353e1bc82804a4399a63de369490e56a7a
      filename
      south.zip
      members
      ['south/south.gpkg']
    • geodatasets.Dataset
      geoda.spirals
      url
      https://geodacenter.github.io/data-and-lab//data/spirals.csv
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Synthetic spiral points
      geometry_type
      Point
      nrows
      300
      ncols
      2
      details
      https://geodacenter.github.io/data-and-lab//spirals/
      hash
      3203b0a6db37c1207b0f1727c980814f541ce0a222597475f9c91540b1d372f1
      filename
      spirals.csv
    • geodatasets.Dataset
      geoda.stlouis
      url
      https://geodacenter.github.io/data-and-lab//data/stlouis.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      St Louis region county homicide counts and rates
      geometry_type
      Polygon
      nrows
      78
      ncols
      24
      details
      https://geodacenter.github.io/data-and-lab//stlouis/
      hash
      181a17a12e9a2b2bfc9013f399e149da935e0d5cb95c3595128f67898c4365f3
      filename
      stlouis.zip
    • geodatasets.Dataset
      geoda.tampa1
      url
      https://geodacenter.github.io/data-and-lab//data/TampaMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Tampa, FL MSA and counties
      geometry_type
      Polygon
      nrows
      547
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//tampa1/
      hash
      9a7ea0746138f62aa589e8377edafea48a7b1be0cdca2b38798ba21665bfb463
      filename
      TampaMSA.zip
      members
      ['TampaMSA/tampa_final_census2.gpkg']
    • geodatasets.Dataset
      geoda.us_sdoh
      url
      https://geodacenter.github.io/data-and-lab//data/us-sdoh-2014.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2014 US Social Determinants of Health Data
      geometry_type
      Polygon
      nrows
      71901
      ncols
      26
      details
      https://geodacenter.github.io/data-and-lab//us-sdoh/
      hash
      076701725c4b67248f79c8b8a40e74f9ad9e194d3237e1858b3d20176a6562a5
      filename
      us-sdoh-2014.zip
      members
      ['us-sdoh-2014/us-sdoh-2014.shp', 'us-sdoh-2014/us-sdoh-2014.dbf', 'us-sdoh-2014/us-sdoh-2014.shx', 'us-sdoh-2014/us-sdoh-2014.prj']
  • geodatasets.Bunch
    1 items
    • geodatasets.Dataset
      ny.bb
      url
      https://www.nyc.gov/assets/planning/download/zip/data-maps/open-data/nybb_16a.zip
      license
      NA
      attribution
      Department of City Planning (DCP)
      description
      The borough boundaries of New York City clipped to the shoreline at mean high tide for 2016.
      geometry_type
      Polygon
      details
      https://data.cityofnewyork.us/City-Government/Borough-Boundaries/tqmj-j8zm
      nrows
      5
      ncols
      5
      hash
      a303be17630990455eb079777a6b31980549e9096d66d41ce0110761a7e2f92a
      filename
      nybb_16a.zip
      members
      ['nybb_16a/nybb.shp', 'nybb_16a/nybb.shx', 'nybb_16a/nybb.dbf', 'nybb_16a/nybb.prj']
  • geodatasets.Bunch
    1 items
    • geodatasets.Dataset
      eea.large_rivers
      url
      https://www.eea.europa.eu/data-and-maps/data/wise-large-rivers-and-large-lakes/zipped-shapefile-with-wise-large-rivers-vector-line/zipped-shapefile-with-wise-large-rivers-vector-line/at_download/file
      license
      ODC-by
      attribution
      European Environmental Agency
      description
      Large rivers in Europe that have a catchment area large than 50,000 km2.
      geometry_type
      LineString
      details
      https://www.eea.europa.eu/data-and-maps/data/wise-large-rivers-and-large-lakes
      nrows
      20
      ncols
      3
      hash
      97b37b781cba30c2292122ba2bdfe2e156a791cefbdfedf611c8473facc6be50
      filename
      wise_large_rivers.zip
  • geodatasets.Bunch
    2 items
    • geodatasets.Dataset
      abs.australia
      url
      https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files/AUS_2021_AUST_SHP_GDA2020.zip
      license
      CC BY 4.0
      attribution
      Australian Bureau of Statistics (ABS)
      description
      Australia land polygon including Norfolk Island, the Territory of Christmas Island, and the Territory of Cocos (Keeling) Islands.
      geometry_type
      Polygon
      nrows
      2
      ncols
      7
      details
      https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files
      hash
      086752a6b0b3978247be201f02e02cd4e3c4f36d4f4ca74802e6831083b67129
      filename
      AUS_2021_AUST_SHP_GDA2020.zip
    • geodatasets.Dataset
      abs.australia_states_territories
      url
      https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files/STE_2021_AUST_SHP_GDA2020.zip
      license
      CC BY 4.0
      attribution
      Australian Bureau of Statistics (ABS)
      description
      Australian state and territory boundaries.
      geometry_type
      Polygon
      nrows
      10
      ncols
      9
      details
      https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files
      hash
      d9b7f735de6085b37414faf011f796dda3c7f768c55e9dce01f96e790f399a21
      filename
      STE_2021_AUST_SHP_GDA2020.zip
  • geodatasets.Bunch
    1 items
    • geodatasets.Dataset
      naturalearth.land
      url
      https://naciscdn.org/naturalearth/110m/physical/ne_110m_land.zip
      license
      CC0
      attribution
      Natural Earth
      description
      Land polygons including major islands in a 1:110m resolution.
      geometry_type
      Polygon
      details
      https://www.naturalearthdata.com/downloads/110m-physical-vectors/110m-land/
      nrows
      127
      ncols
      4
      hash
      1926c621afd6ac67c3f36639bb1236134a48d82226dc675d3e3df53d02d2a3de
      filename
      ne_110m_land.zip
nybb_gdf = gpd.read_file(geodatasets.get_path("ny.bb"))
nybb_gdf.head()
BoroCode BoroName Shape_Leng Shape_Area geometry
0 5 Staten Island 330470.010332 1.623820e+09 MULTIPOLYGON (((970217.022 145643.332, 970227....
1 4 Queens 896344.047763 3.045213e+09 MULTIPOLYGON (((1029606.077 156073.814, 102957...
2 3 Brooklyn 741080.523166 1.937479e+09 MULTIPOLYGON (((1021176.479 151374.797, 102100...
3 1 Manhattan 359299.096471 6.364715e+08 MULTIPOLYGON (((981219.056 188655.316, 980940....
4 2 Bronx 464392.991824 1.186925e+09 MULTIPOLYGON (((1012821.806 229228.265, 101278...

You can also select to read only parts of the data using the bbox, rows or mask argument:

nybb_partial_gdf = gpd.read_file(geodatasets.get_path("ny.bb"), rows=2)
nybb_partial_gdf
BoroCode BoroName Shape_Leng Shape_Area geometry
0 5 Staten Island 330470.010332 1.623820e+09 MULTIPOLYGON (((970217.022 145643.332, 970227....
1 4 Queens 896344.047763 3.045213e+09 MULTIPOLYGON (((1029606.077 156073.814, 102957...

You can retrieve the crs using the following:

nybb_gdf.crs
<Projected CRS: EPSG:2263>
Name: NAD83 / New York Long Island (ftUS)
Axis Info [cartesian]:
- X[east]: Easting (US survey foot)
- Y[north]: Northing (US survey foot)
Area of Use:
- name: United States (USA) - New York - counties of Bronx; Kings; Nassau; New York; Queens; Richmond; Suffolk.
- bounds: (-74.26, 40.47, -71.8, 41.3)
Coordinate Operation:
- name: SPCS83 New York Long Island zone (US survey foot)
- method: Lambert Conic Conformal (2SP)
Datum: North American Datum 1983
- Ellipsoid: GRS 1980
- Prime Meridian: Greenwich

17.3. Writing Files#

You can write any GeoDataFrame to local disk and set the format using the driver argument.

nybb_gdf.to_file("nybb.geojson", driver="GeoJSON")

17.4. Constructing a GeoDataFrame manually#

from shapely.geometry import Point
points_gdf = gpd.GeoDataFrame({
    'geometry': [Point(1, 1), Point(2, 2)],
    'attribute1': [1, 2],
    'attribute2': [0.1, 0.2]})
points_gdf
geometry attribute1 attribute2
0 POINT (1 1) 1 0.1
1 POINT (2 2) 2 0.2

17.5. Creating a GeoDataFrame from an existing dataframe#

Let’s create a pandas DataFrame:

cities_df = pd.DataFrame(
    {'City': ['Buenos Aires', 'Brasilia', 'Santiago', 'Bogota', 'Caracas'],
     'Country': ['Argentina', 'Brazil', 'Chile', 'Colombia', 'Venezuela'],
     'Latitude': [-34.58, -15.78, -33.45, 4.60, 10.48],
     'Longitude': [-58.66, -47.91, -70.66, -74.08, -66.86]})
cities_gdf = gpd.GeoDataFrame(
    cities_df, geometry=gpd.points_from_xy(cities_df.Longitude, cities_df.Latitude))
cities_gdf
City Country Latitude Longitude geometry
0 Buenos Aires Argentina -34.58 -58.66 POINT (-58.66 -34.58)
1 Brasilia Brazil -15.78 -47.91 POINT (-47.91 -15.78)
2 Santiago Chile -33.45 -70.66 POINT (-70.66 -33.45)
3 Bogota Colombia 4.60 -74.08 POINT (-74.08 4.6)
4 Caracas Venezuela 10.48 -66.86 POINT (-66.86 10.48)

17.6. Working with Attributes#

All the attributes that are defined in shapely for objects, are available in GeoSeries. When you retrieve these from a GeoDataFrame however, you should note that they will be calculated based on the active geometry column.

area: shape area (units of projection – see projections)

bounds: tuple of max and min coordinates on each axis for each shape

total_bounds: tuple of max and min coordinates on each axis for entire GeoSeries

boundary:a lower dimensional object representing the object’s set-theoretic boundary. (The boundary of a polygon is a line, the boundary of a line is a collection of points. The boundary of a point is an empty collection.)

geom_type: type of geometry.

is_valid: tests if coordinates make a shape that is reasonable geometric shape according to the Simple Feature Access standard.

nybb_gdf.columns
Index(['BoroCode', 'BoroName', 'Shape_Leng', 'Shape_Area', 'geometry'], dtype='object')
nybb_gdf["boundary"] = nybb_gdf.boundary
nybb_gdf["boundary"]
0    MULTILINESTRING ((970217.022 145643.332, 97022...
1    MULTILINESTRING ((1029606.077 156073.814, 1029...
2    MULTILINESTRING ((1021176.479 151374.797, 1021...
3    MULTILINESTRING ((981219.056 188655.316, 98094...
4    MULTILINESTRING ((1012821.806 229228.265, 1012...
Name: boundary, dtype: geometry
nybb_gdf["centroid"] = nybb_gdf.centroid
nybb_gdf["centroid"]
0      POINT (941639.45 150931.991)
1    POINT (1034578.078 197116.604)
2     POINT (998769.115 174169.761)
3     POINT (993336.965 222451.437)
4      POINT (1021174.79 249937.98)
Name: centroid, dtype: geometry

With columnes boundary and centroid saved to the nybb_gdf, we now have three geometry comulmns in the same GeoDataFrame:

nybb_gdf.head()
BoroCode BoroName Shape_Leng Shape_Area geometry boundary centroid
0 5 Staten Island 330470.010332 1.623820e+09 MULTIPOLYGON (((970217.022 145643.332, 970227.... MULTILINESTRING ((970217.022 145643.332, 97022... POINT (941639.45 150931.991)
1 4 Queens 896344.047763 3.045213e+09 MULTIPOLYGON (((1029606.077 156073.814, 102957... MULTILINESTRING ((1029606.077 156073.814, 1029... POINT (1034578.078 197116.604)
2 3 Brooklyn 741080.523166 1.937479e+09 MULTIPOLYGON (((1021176.479 151374.797, 102100... MULTILINESTRING ((1021176.479 151374.797, 1021... POINT (998769.115 174169.761)
3 1 Manhattan 359299.096471 6.364715e+08 MULTIPOLYGON (((981219.056 188655.316, 980940.... MULTILINESTRING ((981219.056 188655.316, 98094... POINT (993336.965 222451.437)
4 2 Bronx 464392.991824 1.186925e+09 MULTIPOLYGON (((1012821.806 229228.265, 101278... MULTILINESTRING ((1012821.806 229228.265, 1012... POINT (1021174.79 249937.98)

17.7. Applying Basic Methods#

distance(): returns a Series with minimum distance from each entry to a sample point.

centroid: returns a GeoSeries of centroids

representative_point(): returns a GeoSeries of points that are guaranteed to be within each geometry. It does NOT return centroids.

to_crs(): change coordinate reference system. See projections.

plot(): plot GeoSeries. See mapping.

We can measure the distance of each centroid from the first centroid location:

first_point = nybb_gdf["centroid"].iloc[0]
nybb_gdf["distance"] = nybb_gdf["centroid"].distance(first_point)
nybb_gdf["distance"]
0         0.000000
1    103781.535276
2     61674.893421
3     88247.742789
4    126996.283623
Name: distance, dtype: float64

17.8. Plotting GeoPandas#

Similar to pandas, if you call the plot() method of GeoDataFrame it will plot the active geometry column of it.

nybb_gdf.plot()
<Axes: >
../_images/53de327942db3c1dbcc91149a1795225854c6ae13bbf89e2505b1073db90a570.png

You can customize this and plot specific attributes of the GeoDataFrame. In the following, we will calculate the area of each object in the GeoDataFrame and plot it.

nybb_gdf["area"] = nybb_gdf.area
nybb_gdf.plot("area", legend=True)
<Axes: >
../_images/79a8b54443eb9758733d093f199bc2aaa1f2e1fd35e76cb3cd6b1b44ef05a76e.png

There is also an interactive way to plot the data using the explore function. This uses folium/leaflet.js to plot the data.

nybb_gdf.explore("area", legend=False)
Make this Notebook Trusted to load map: File -> Trust Notebook

Now, let’s set the centroid of each borough as the active geometry of the GeoDataFrame

nybb_gdf.set_geometry("centroid", inplace = True)
nybb_gdf.plot()
<Axes: >
../_images/adab9df3c8bdd6b39d7d27fde08d3cd79f3b138976f7b42d19fb2dbe6cf63c41.png

As you can see, the plot() method in this case plots the centroids which is the active geometry of the GeoDataFrame.

nybb_gdf.columns
Index(['BoroCode', 'BoroName', 'Shape_Leng', 'Shape_Area', 'geometry',
       'boundary', 'centroid', 'distance', 'area'],
      dtype='object')
nybb_gdf.geometry
0      POINT (941639.45 150931.991)
1    POINT (1034578.078 197116.604)
2     POINT (998769.115 174169.761)
3     POINT (993336.965 222451.437)
4      POINT (1021174.79 249937.98)
Name: centroid, dtype: geometry
nybb_gdf["geometry"]
0    MULTIPOLYGON (((970217.022 145643.332, 970227....
1    MULTIPOLYGON (((1029606.077 156073.814, 102957...
2    MULTIPOLYGON (((1021176.479 151374.797, 102100...
3    MULTIPOLYGON (((981219.056 188655.316, 980940....
4    MULTIPOLYGON (((1012821.806 229228.265, 101278...
Name: geometry, dtype: geometry

Note: By default when you use the read_file() command, the column containing spatial objects from the file is named “geometry”, and is set as the active geometry column. However, despite using the same term for the name of the column and the name of the special attribute that keeps track of the active column, they are distinct. You can easily shift the active geometry column to a different GeoSeries with the set_geometry() command. Further, gdf.geometry will always return the active geometry column, not the column named geometry. If you wish to call a column named “geometry”, and a different column is the active geometry column, use gdf['geometry'], not gdf.geometry.

Let’s set the geometry back to its original column

nybb_gdf.set_geometry("geometry", inplace = True)

Now, let’s plot centroids on the same map as polygons:

ax = nybb_gdf.plot()
nybb_gdf["centroid"].plot(ax = ax, color = "red")
<Axes: >
../_images/cc44371cdc018bdeaa04bbb28717f87efbf6f2fae987f960771688e381e090cb.png

17.9. Plotting with CartoPy and GeoPandas#

Let’s load another dataset, and plot it with both GeoPandas and CartoPy. Our goal is to use the features of CartoPy to create a better visualization of the data in a GeoDataFrame.

We are going to also transform the projection of a GeoDataFrame to a different crs.

land_gdf = gpd.read_file(geodatasets.get_url("naturalearth.land"))
land_gdf.plot()
<Axes: >
../_images/29c22ca677224b7ae54e44e5a757f90385fe3d51dac9e6f03390634dd030d06e.png

We can retrieve the CRS of the GeoDataFrame:

land_gdf.crs
<Geographic 2D CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World.
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

We are going to a define a new CRS using CartoPy:

target_crs = ccrs.AzimuthalEquidistant()

And convert it to an EPSG CRS:

target_crs_proj4 = target_crs.to_proj4()

Now, we project the land_gdf GeoDataFrame to the new crs

land_gdf_ae = land_gdf.to_crs(target_crs_proj4)
land_gdf_ae.plot()
<Axes: >
../_images/5f955448a839a540e18c87f999be2078e34b15dcf590558ec5fc5ba884faf9c7.png

We could have done this with CartoPy as well now that our data is in a crs understandable to CartoPy

fig, ax = plt.subplots(subplot_kw={"projection": target_crs})
ax.add_geometries(land_gdf_ae["geometry"], crs=target_crs)
<cartopy.mpl.feature_artist.FeatureArtist at 0xffff35cebd40>
../_images/e5a428f18101a1a8694d244d430f5f5d48b8f43a8c46596942c09d52e67dc2dc.png

17.10. Merging Data#

We can merge different GeoPandas datasets using attribute joins or spatial joins.

In attribute join, a GeoSeries or GeoDataFrame is merged with a regular pandas.Series or pandas.DataFrame based on common variables (this is similar to merging in pandas).

In a spatial join, observations from two GeoSeries or GeoDataFrame are combined based on their spatial relationships to one another.

Let’s import two example datasets to work with:

geodatasets.data
geodatasets.Bunch
5 items
  • geodatasets.Bunch
    53 items
    • geodatasets.Dataset
      geoda.airbnb
      url
      https://geodacenter.github.io/data-and-lab//data/airbnb.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Airbnb rentals, socioeconomics, and crime in Chicago
      geometry_type
      Polygon
      nrows
      77
      ncols
      21
      details
      https://geodacenter.github.io/data-and-lab//airbnb/
      hash
      a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824
      filename
      airbnb.zip
    • geodatasets.Dataset
      geoda.atlanta
      url
      https://geodacenter.github.io/data-and-lab//data/atlanta_hom.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Atlanta, GA region homicide counts and rates
      geometry_type
      Polygon
      nrows
      90
      ncols
      24
      details
      https://geodacenter.github.io/data-and-lab//atlanta_old/
      hash
      a33a76e12168fe84361e60c88a9df4856730487305846c559715c89b1a2b5e09
      filename
      atlanta_hom.zip
      members
      ['atlanta_hom/atl_hom.geojson']
    • geodatasets.Dataset
      geoda.cars
      url
      https://geodacenter.github.io/data-and-lab//data/Abandoned_Vehicles_Map.csv
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2011 abandoned vehicles in Chicago (311 complaints).
      geometry_type
      Point
      nrows
      137867
      ncols
      21
      details
      https://geodacenter.github.io/data-and-lab//1-source-and-description/
      hash
      6a0b23bc7eda2dcf1af02d43ccf506b24ca8d8c6dc2fe86a2a1cc051b03aae9e
      filename
      Abandoned_Vehicles_Map.csv
    • geodatasets.Dataset
      geoda.charleston1
      url
      https://geodacenter.github.io/data-and-lab//data/CharlestonMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Charleston, SC MSA and counties
      geometry_type
      Polygon
      nrows
      117
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//charleston-1_old/
      hash
      4a4fa9c8dd4231ae0b2f12f24895b8336bcab0c28c48653a967cffe011f63a7c
      filename
      CharlestonMSA.zip
      members
      ['CharlestonMSA/sc_final_census2.gpkg']
    • geodatasets.Dataset
      geoda.charleston2
      url
      https://geodacenter.github.io/data-and-lab//data/CharlestonMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Charleston, SC MSA
      geometry_type
      Polygon
      nrows
      42
      ncols
      60
      details
      https://geodacenter.github.io/data-and-lab//charleston2/
      hash
      056d5d6e236b5bd95f5aee26c77bbe7d61bd07db5aaf72866c2f545205c1d8d7
      filename
      CharlestonMSA2.zip
      members
      ['CharlestonMSA2/CharlestonMSA2.gpkg']
    • geodatasets.Dataset
      geoda.chicago_health
      url
      https://geodacenter.github.io/data-and-lab//data/comarea.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Chicago Health + Socio-Economics
      geometry_type
      Polygon
      nrows
      77
      ncols
      87
      details
      https://geodacenter.github.io/data-and-lab//comarea_vars/
      hash
      4e872adb552786eae2fcd745524696e5e4cd33cc9a6c032471c0e75328871401
      filename
      comarea.zip
    • geodatasets.Dataset
      geoda.chicago_commpop
      url
      https://geodacenter.github.io/data-and-lab//data/chicago_commpop.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Chicago Community Area Population Percent Change for 2000 and 2010
      geometry_type
      Polygon
      nrows
      77
      ncols
      9
      details
      https://geodacenter.github.io/data-and-lab//commpop/
      hash
      1dbebb50c8ea47e2279ea819ef64ba793bdee2b88e4716bd6c6ec0e0d8e0e05b
      filename
      chicago_commpop.zip
      members
      ['chicago_commpop/chicago_commpop.geojson']
    • geodatasets.Dataset
      geoda.chile_labor
      url
      https://geodacenter.github.io/data-and-lab//data/flma.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Labor Markets in Chile (1982-2002)
      geometry_type
      Polygon
      nrows
      64
      ncols
      140
      details
      https://geodacenter.github.io/data-and-lab//FLMA/
      hash
      4777072268d0127b3d0be774f51d0f66c15885e9d3c92bc72c641a72f220796c
      filename
      flma.zip
      members
      ['flma/FLMA.geojson']
    • geodatasets.Dataset
      geoda.cincinnati
      url
      https://geodacenter.github.io/data-and-lab//data/walnuthills_updated.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2008 Cincinnati Crime + Socio-Demographics
      geometry_type
      Polygon
      nrows
      457
      ncols
      73
      details
      https://geodacenter.github.io/data-and-lab//walnut_hills/
      hash
      d6871dd688bd14cf4710a218d721d34f6574456f2a14d5c5cfe5a92054ee9763
      filename
      walnuthills_updated.zip
      members
      ['walnuthills_updated']
    • geodatasets.Dataset
      geoda.cleveland
      url
      https://geodacenter.github.io/data-and-lab//data/cleveland.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2015 sales prices of homes in Cleveland, OH.
      geometry_type
      Point
      nrows
      205
      ncols
      10
      details
      https://geodacenter.github.io/data-and-lab//clev_sls_154_core/
      hash
      49aeba03eb06bf9b0d9cddd6507eb4a226b7c7a7561145562885c5cddfaeaadf
      filename
      cleveland.zip
    • geodatasets.Dataset
      geoda.grid100
      url
      https://geodacenter.github.io/data-and-lab//data/grid100.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Grid with simulated variables
      geometry_type
      Polygon
      nrows
      100
      ncols
      37
      details
      https://geodacenter.github.io/data-and-lab//grid100/
      hash
      5702ba39606044f71d53ae6a83758b81332bd3aa216b7b7b6e1c60dd0e72f476
      filename
      grid100.zip
      members
      ['grid100/grid100s.gpkg']
    • geodatasets.Dataset
      geoda.groceries
      url
      https://geodacenter.github.io/data-and-lab//data/grocery.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2015 Chicago supermarkets
      geometry_type
      Point
      nrows
      148
      ncols
      8
      details
      https://geodacenter.github.io/data-and-lab//chicago_sup_vars/
      hash
      ead10e53b21efcaa29b798428b93ba2a1c0ba1b28f046265c1737712fa83f88a
      filename
      grocery.zip
      members
      ['grocery/chicago_sup.shp', 'grocery/chicago_sup.dbf', 'grocery/chicago_sup.shx', 'grocery/chicago_sup.prj']
    • geodatasets.Dataset
      geoda.guerry
      url
      https://geodacenter.github.io/data-and-lab//data/guerry.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Mortal statistics of France (Guerry, 1833)
      geometry_type
      Polygon
      nrows
      85
      ncols
      24
      details
      https://geodacenter.github.io/data-and-lab//Guerry/
      hash
      80d2b355ad3340fcffa0a28e5cec0698af01067f8059b1a60388d200a653b3e8
      filename
      guerry.zip
      members
      ['guerry/guerry.shp', 'guerry/guerry.dbf', 'guerry/guerry.shx', 'guerry/guerry.prj']
    • geodatasets.Dataset
      geoda.health
      url
      https://geodacenter.github.io/data-and-lab//data/income_diversity.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Health, Income + Diversity
      geometry_type
      Polygon
      nrows
      3984
      ncols
      65
      details
      https://geodacenter.github.io/data-and-lab//co_income_diversity_variables/
      hash
      eafee1063040258bc080e7b501bdf1438d6e45ba208954d8c2e1a7562142d0a7
      filename
      income_diversity.zip
      members
      ['income_diversity/income_diversity.shp', 'income_diversity/income_diversity.dbf', 'income_diversity/income_diversity.shx', 'income_diversity/income_diversity.prj']
    • geodatasets.Dataset
      geoda.health_indicators
      url
      https://geodacenter.github.io/data-and-lab//data/healthIndicators.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Chicago Health Indicators (2005-11)
      geometry_type
      Polygon
      nrows
      77
      ncols
      32
      details
      https://geodacenter.github.io/data-and-lab//healthindicators-variables/
      hash
      b43683245f8fc3b4ab69ffa75d2064920a1a91dc76b9dcc08e288765ba0c94f3
      filename
      healthIndicators.zip
    • geodatasets.Dataset
      geoda.hickory1
      url
      https://geodacenter.github.io/data-and-lab//data/HickoryMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Hickory, NC MSA and counties
      geometry_type
      Polygon
      nrows
      68
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//hickory1/
      hash
      4c0804608d303e6e44d51966bb8927b1f5f9e060a9b91055a66478b9039d2b44
      filename
      HickoryMSA.zip
      members
      ['HickoryMSA/nc_final_census2.geojson']
    • geodatasets.Dataset
      geoda.hickory2
      url
      https://geodacenter.github.io/data-and-lab//data/HickoryMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Hickory, NC MSA
      geometry_type
      Polygon
      nrows
      29
      ncols
      56
      details
      https://geodacenter.github.io/data-and-lab//hickory2/
      hash
      5e9498e1ff036297c3eea3cc42ac31501680a43b50c71b486799ef9021679d07
      filename
      HickoryMSA2.zip
      members
      ['HickoryMSA2/HickoryMSA2.geojson']
    • geodatasets.Dataset
      geoda.home_sales
      url
      https://geodacenter.github.io/data-and-lab//data/kingcounty.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2014-15 Home Sales in King County, WA
      geometry_type
      Point
      nrows
      21613
      ncols
      22
      details
      https://geodacenter.github.io/data-and-lab//KingCounty-HouseSales2015/
      hash
      b979f0eb2cef6ebd2c761d552821353f795635eb8db53a95f2815fc46e1f644c
      filename
      kingcounty.zip
      members
      ['kingcounty/kc_house.shp', 'kingcounty/kc_house.dbf', 'kingcounty/kc_house.shx', 'kingcounty/kc_house.prj']
    • geodatasets.Dataset
      geoda.houston
      url
      https://geodacenter.github.io/data-and-lab//data/houston_hom.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Houston, TX region homicide counts and rates
      geometry_type
      Polygon
      nrows
      52
      ncols
      24
      details
      https://geodacenter.github.io/data-and-lab//houston/
      hash
      d3167fd150a1369d9a32b892d3b2a8747043d3d382c3dd81e51f696b191d0d15
      filename
      houston_hom.zip
      members
      ['houston_hom/hou_hom.geojson']
    • geodatasets.Dataset
      geoda.juvenile
      url
      https://geodacenter.github.io/data-and-lab//data/juvenile.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Cardiff juvenile delinquent residences
      geometry_type
      Point
      nrows
      168
      ncols
      4
      details
      https://geodacenter.github.io/data-and-lab//juvenile/
      hash
      811cfcfa613578214d907bfbdd396c6e02261e5cda6d56b25a6f961148de961c
      filename
      juvenile.zip
      members
      ['juvenile/juvenile.shp', 'juvenile/juvenile.shx', 'juvenile/juvenile.dbf']
    • geodatasets.Dataset
      geoda.lansing1
      url
      https://geodacenter.github.io/data-and-lab//data/LansingMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Lansing, MI MSA and counties
      geometry_type
      Polygon
      nrows
      117
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//lansing1/
      hash
      724ce3d889fa50e7632d16200cf588d40168d49adaf5bca45049dc1b3758bde1
      filename
      LansingMSA.zip
      members
      ['LansingMSA/mi_final_census2.geojson']
    • geodatasets.Dataset
      geoda.lansing2
      url
      https://geodacenter.github.io/data-and-lab//data/LansingMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Lansing, MI MSA
      geometry_type
      Polygon
      nrows
      46
      ncols
      56
      details
      https://geodacenter.github.io/data-and-lab//lansing2/
      hash
      7657c05d3bd6090c4d5914cfe5aaf01f694601c1e0c29bc3ecbe9bc523662303
      filename
      LansingMSA2.zip
      members
      ['LansingMSA2/LansingMSA2.geojson']
    • geodatasets.Dataset
      geoda.lasrosas
      url
      https://geodacenter.github.io/data-and-lab//data/lasrosas.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Corn yield, fertilizer and field data for precision agriculture, Argentina, 1999
      geometry_type
      Polygon
      nrows
      1738
      ncols
      35
      details
      https://geodacenter.github.io/data-and-lab//lasrosas/
      hash
      038d0e82203f2875b50499dbd8498ca9c762ebd8003b2f2203ebc6acada8f8fd
      filename
      lasrosas.zip
      members
      ['lasrosas/rosas1999.gpkg']
    • geodatasets.Dataset
      geoda.liquor_stores
      url
      https://geodacenter.github.io/data-and-lab//data/liquor.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2015 Chicago Liquor Stores
      geometry_type
      Point
      nrows
      571
      ncols
      3
      details
      https://geodacenter.github.io/data-and-lab//liq_chicago/
      hash
      6a483a6a7066a000bc97bfe71596cf28834d3088fbc958455b903a0938b3b530
      filename
      liquor.zip
      members
      ['liq_Chicago.shp', 'liq_Chicago.dbf', 'liq_Chicago.shx', 'liq_Chicago.prj']
    • geodatasets.Dataset
      geoda.malaria
      url
      https://geodacenter.github.io/data-and-lab//data/malariacolomb.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Malaria incidence and population (1973, 95, 93 censuses and projections until 2005)
      geometry_type
      Polygon
      nrows
      1068
      ncols
      51
      details
      https://geodacenter.github.io/data-and-lab//colomb_malaria/
      hash
      ca77477656829833a4e3e384b02439632fa28bb577610fe5aef9e0b094c41a95
      filename
      malariacolomb.zip
      members
      ['malariacolomb/colmunic.gpkg']
    • geodatasets.Dataset
      geoda.milwaukee1
      url
      https://geodacenter.github.io/data-and-lab//data/MilwaukeeMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Milwaukee, WI MSA
      geometry_type
      Polygon
      nrows
      417
      ncols
      35
      details
      https://geodacenter.github.io/data-and-lab//milwaukee1/
      hash
      bf3c9617c872db26ea56f20e82a449f18bb04d8fb76a653a2d3842d465bc122c
      filename
      MilwaukeeMSA.zip
      members
      ['MilwaukeeMSA/wi_final_census2_random4.gpkg']
    • geodatasets.Dataset
      geoda.milwaukee2
      url
      https://geodacenter.github.io/data-and-lab//data/MilwaukeeMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Milwaukee, WI MSA
      geometry_type
      Polygon
      nrows
      83
      ncols
      60
      details
      https://geodacenter.github.io/data-and-lab//milwaukee2/
      hash
      7f74212d63addb9ab84fac9447ee898498c8fafc284edcffe1f1ac79c2175d60
      filename
      MilwaukeeMSA2.zip
      members
      ['MilwaukeeMSA2/MilwaukeeMSA2.gpkg']
    • geodatasets.Dataset
      geoda.ncovr
      url
      https://geodacenter.github.io/data-and-lab//data/ncovr.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      US county homicides 1960-1990
      geometry_type
      Polygon
      nrows
      3085
      ncols
      70
      details
      https://geodacenter.github.io/data-and-lab//ncovr/
      hash
      e8cb04e6da634c6cd21808bd8cfe4dad6e295b22e8d40cc628e666887719cfe9
      filename
      ncovr.zip
      members
      ['ncovr/NAT.gpkg']
    • geodatasets.Dataset
      geoda.natregimes
      url
      https://geodacenter.github.io/data-and-lab//data/natregimes.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      NCOVR with regimes (book/PySAL)
      geometry_type
      Polygon
      nrows
      3085
      ncols
      74
      details
      https://geodacenter.github.io/data-and-lab//natregimes/
      hash
      431d0d95ffa000692da9319e6bd28701b1156f7b8e716d4bfcd1e09b6e357918
      filename
      natregimes.zip
    • geodatasets.Dataset
      geoda.ndvi
      url
      https://geodacenter.github.io/data-and-lab//data/ndvi.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Normalized Difference Vegetation Index grid
      geometry_type
      Polygon
      nrows
      49
      ncols
      8
      details
      https://geodacenter.github.io/data-and-lab//ndvi/
      hash
      a89459e50a4495c24ead1d284930467ed10eb94829de16a693a9fa89dea2fe22
      filename
      ndvi.zip
      members
      ['ndvi/ndvigrid.gpkg']
    • geodatasets.Dataset
      geoda.nepal
      url
      https://geodacenter.github.io/data-and-lab//data/nepal.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Health, poverty and education indicators for Nepal districts
      geometry_type
      Polygon
      nrows
      75
      ncols
      62
      details
      https://geodacenter.github.io/data-and-lab//nepal/
      hash
      d7916568fe49ff258d0f03ac115e68f64cdac572a9fd2b29de2d70554ac2b20d
      filename
      nepal.zip
    • geodatasets.Dataset
      geoda.nyc
      url
      https://geodacenter.github.io/data-and-lab///data/nyc.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Demographic and housing data for New York City subboroughs, 2002-09
      geometry_type
      Polygon
      nrows
      55
      ncols
      35
      details
      https://geodacenter.github.io/data-and-lab//nyc/
      hash
      a67dff2f9e6da9e11737e6be5a16e1bc33954e2c954332d68bcbf6ff7203702b
      filename
      nyc.zip
    • geodatasets.Dataset
      geoda.nyc_earnings
      url
      https://geodacenter.github.io/data-and-lab//data/lehd.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Block-level Earnings in NYC (2002-14)
      geometry_type
      Polygon
      nrows
      108487
      ncols
      71
      details
      https://geodacenter.github.io/data-and-lab//LEHD_Data/
      hash
      771fe11e59a16d4c15c6471d9a81df5e9c9bda5ef0a207e77d8ff21b2c16891b
      filename
      lehd.zip
    • geodatasets.Dataset
      geoda.nyc_education
      url
      https://geodacenter.github.io/data-and-lab//data/nyc_2000Census.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      NYC Education (2000)
      geometry_type
      Polygon
      nrows
      2216
      ncols
      57
      details
      https://geodacenter.github.io/data-and-lab//NYC-Census-2000/
      hash
      ecdf342654415107911291a8076c1685bd2c8a08d8eaed3ce9c3e9401ef714f2
      filename
      nyc_2000Census.zip
    • geodatasets.Dataset
      geoda.nyc_neighborhoods
      url
      https://geodacenter.github.io/data-and-lab//data/nycnhood_acs.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Demographics for New York City neighborhoods
      geometry_type
      Polygon
      nrows
      195
      ncols
      99
      details
      https://geodacenter.github.io/data-and-lab//NYC-Nhood-ACS-2008-12/
      hash
      aeb75fc5c95fae1088093827fca69928cee3ad27039441bb35c03013d2ee403f
      filename
      nycnhood_acs.zip
    • geodatasets.Dataset
      geoda.orlando1
      url
      https://geodacenter.github.io/data-and-lab//data/OrlandoMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Orlando, FL MSA and counties
      geometry_type
      Polygon
      nrows
      328
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//orlando1/
      hash
      e98ea5b9ffaf3e421ed437f665c739d1e92d9908e2b121c75ac02ecf7de2e254
      filename
      OrlandoMSA.zip
      members
      ['OrlandoMSA/orlando_final_census2.gpkg']
    • geodatasets.Dataset
      geoda.orlando2
      url
      https://geodacenter.github.io/data-and-lab//data/OrlandoMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Orlando, FL MSA
      geometry_type
      Polygon
      nrows
      94
      ncols
      60
      details
      https://geodacenter.github.io/data-and-lab//orlando2/
      hash
      4cd8c3469cb7edea5f0fb615026192e12b1d4b50c22b28345adf476bc85d0f03
      filename
      OrlandoMSA2.zip
      members
      ['OrlandoMSA2/OrlandoMSA2.gpkg']
    • geodatasets.Dataset
      geoda.oz9799
      url
      https://geodacenter.github.io/data-and-lab//data/oz9799.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Monthly ozone data, 1997-99
      geometry_type
      Point
      nrows
      30
      ncols
      78
      details
      https://geodacenter.github.io/data-and-lab//oz96/
      hash
      1ecc7c46f5f42af6057dedc1b73f56b576cb9716d2c08d23cba98f639dfddb82
      filename
      oz9799.zip
      members
      ['oz9799/oz9799.csv']
    • geodatasets.Dataset
      geoda.phoenix_acs
      url
      https://geodacenter.github.io/data-and-lab//data/phx2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Phoenix American Community Survey Data (2010, 5-year averages)
      geometry_type
      Polygon
      nrows
      985
      ncols
      18
      details
      https://geodacenter.github.io/data-and-lab//phx/
      hash
      b2f6e196bacb6f3fe1fc909af482e7e75b83d1f8363fc73038286364c13334ee
      filename
      phx2.zip
      members
      ['phx/phx.gpkg']
    • geodatasets.Dataset
      geoda.police
      url
      https://geodacenter.github.io/data-and-lab//data/police.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Police expenditures Mississippi counties
      geometry_type
      Polygon
      nrows
      82
      ncols
      22
      details
      https://geodacenter.github.io/data-and-lab//police/
      hash
      596270d62dea8207001da84883ac265591e5de053f981c7491e7b5c738e9e9ff
      filename
      police.zip
      members
      ['police/police.gpkg']
    • geodatasets.Dataset
      geoda.sacramento1
      url
      https://geodacenter.github.io/data-and-lab//data/sacramento.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Sacramento MSA
      geometry_type
      Polygon
      nrows
      403
      ncols
      32
      details
      https://geodacenter.github.io/data-and-lab//sacramento1/
      hash
      72ddeb533cf2917dc1f458add7c6042b93c79b31316ae2d22f1c855a9da275f9
      filename
      sacramento.zip
      members
      ['sacramento/sacramentot2.gpkg']
    • geodatasets.Dataset
      geoda.sacramento2
      url
      https://geodacenter.github.io/data-and-lab//data/SacramentoMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Sacramento MSA
      geometry_type
      Polygon
      nrows
      125
      ncols
      59
      details
      https://geodacenter.github.io/data-and-lab//sacramento2/
      hash
      3f6899efd371804ea8bfaf3cdfd3ed4753ea4d009fed38a57c5bbf442ab9468b
      filename
      SacramentoMSA2.zip
      members
      ['SacramentoMSA2/SacramentoMSA2.gpkg']
    • geodatasets.Dataset
      geoda.savannah1
      url
      https://geodacenter.github.io/data-and-lab//data/SavannahMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Savannah, GA MSA and counties
      geometry_type
      Polygon
      nrows
      77
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//savannah1/
      hash
      df48c228776d2122c38935b2ebbf4cbb90c0bacc68df01161e653aab960e4208
      filename
      SavannahMSA.zip
      members
      ['SavannahMSA/ga_final_census2.gpkg']
    • geodatasets.Dataset
      geoda.savannah2
      url
      https://geodacenter.github.io/data-and-lab//data/SavannahMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Savannah, GA MSA
      geometry_type
      Polygon
      nrows
      24
      ncols
      60
      details
      https://geodacenter.github.io/data-and-lab//savannah2/
      hash
      5b22b84a8665434cb91e800a039337f028b888082b8ef7a26d77eb6cc9aea8c1
      filename
      SavannahMSA2.zip
      members
      ['SavannahMSA2/SavannahMSA2.gpkg']
    • geodatasets.Dataset
      geoda.seattle1
      url
      https://geodacenter.github.io/data-and-lab//data/SeattleMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Seattle, WA MSA and counties
      geometry_type
      Polygon
      nrows
      664
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//seattle1/
      hash
      46fb75a30f0e7963e6108bdb19af4d7db4c72c3d5a020025cafa528c96e09daa
      filename
      SeattleMSA.zip
      members
      ['SeattleMSA/wa_final_census2.gpkg']
    • geodatasets.Dataset
      geoda.seattle2
      url
      https://geodacenter.github.io/data-and-lab//data/SeattleMSA2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      1998 and 2001 Zip Code Business Patterns (Census Bureau) for Seattle, WA MSA
      geometry_type
      Polygon
      nrows
      145
      ncols
      60
      details
      https://geodacenter.github.io/data-and-lab//seattle2/
      hash
      3dac2fa5b8c8dfa9dd5273a85de7281e06e18ab4f197925607f815f4e44e4d0c
      filename
      SeattleMSA2.zip
      members
      ['SeattleMSA2/SeattleMSA2.gpkg']
    • geodatasets.Dataset
      geoda.sids
      url
      https://geodacenter.github.io/data-and-lab//data/sids.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      North Carolina county SIDS death counts
      geometry_type
      Polygon
      nrows
      100
      ncols
      15
      details
      https://geodacenter.github.io/data-and-lab//sids/
      hash
      e2f7b210b9a57839423fd170e47c02cf7a2602a480a1036bb0324e1112a4eaab
      filename
      sids.zip
      members
      ['sids/sids.gpkg']
    • geodatasets.Dataset
      geoda.sids2
      url
      https://geodacenter.github.io/data-and-lab//data/sids2.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      North Carolina county SIDS death counts and rates
      geometry_type
      Polygon
      nrows
      100
      ncols
      19
      details
      https://geodacenter.github.io/data-and-lab//sids2/
      hash
      b5875ffbdb261e6fa75dc4580d67111ef1434203f2d6a5d63ffac16db3a14bd0
      filename
      sids2.zip
      members
      ['sids2/sids2.gpkg']
    • geodatasets.Dataset
      geoda.south
      url
      https://geodacenter.github.io/data-and-lab//data/south.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      US Southern county homicides 1960-1990
      geometry_type
      Polygon
      nrows
      1412
      ncols
      70
      details
      https://geodacenter.github.io/data-and-lab//south/
      hash
      8f151d99c643b187aad37cfb5c3212353e1bc82804a4399a63de369490e56a7a
      filename
      south.zip
      members
      ['south/south.gpkg']
    • geodatasets.Dataset
      geoda.spirals
      url
      https://geodacenter.github.io/data-and-lab//data/spirals.csv
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      Synthetic spiral points
      geometry_type
      Point
      nrows
      300
      ncols
      2
      details
      https://geodacenter.github.io/data-and-lab//spirals/
      hash
      3203b0a6db37c1207b0f1727c980814f541ce0a222597475f9c91540b1d372f1
      filename
      spirals.csv
    • geodatasets.Dataset
      geoda.stlouis
      url
      https://geodacenter.github.io/data-and-lab//data/stlouis.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      St Louis region county homicide counts and rates
      geometry_type
      Polygon
      nrows
      78
      ncols
      24
      details
      https://geodacenter.github.io/data-and-lab//stlouis/
      hash
      181a17a12e9a2b2bfc9013f399e149da935e0d5cb95c3595128f67898c4365f3
      filename
      stlouis.zip
    • geodatasets.Dataset
      geoda.tampa1
      url
      https://geodacenter.github.io/data-and-lab//data/TampaMSA.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2000 Census Tract Data for Tampa, FL MSA and counties
      geometry_type
      Polygon
      nrows
      547
      ncols
      31
      details
      https://geodacenter.github.io/data-and-lab//tampa1/
      hash
      9a7ea0746138f62aa589e8377edafea48a7b1be0cdca2b38798ba21665bfb463
      filename
      TampaMSA.zip
      members
      ['TampaMSA/tampa_final_census2.gpkg']
    • geodatasets.Dataset
      geoda.us_sdoh
      url
      https://geodacenter.github.io/data-and-lab//data/us-sdoh-2014.zip
      license
      NA
      attribution
      Center for Spatial Data Science, University of Chicago
      description
      2014 US Social Determinants of Health Data
      geometry_type
      Polygon
      nrows
      71901
      ncols
      26
      details
      https://geodacenter.github.io/data-and-lab//us-sdoh/
      hash
      076701725c4b67248f79c8b8a40e74f9ad9e194d3237e1858b3d20176a6562a5
      filename
      us-sdoh-2014.zip
      members
      ['us-sdoh-2014/us-sdoh-2014.shp', 'us-sdoh-2014/us-sdoh-2014.dbf', 'us-sdoh-2014/us-sdoh-2014.shx', 'us-sdoh-2014/us-sdoh-2014.prj']
  • geodatasets.Bunch
    1 items
    • geodatasets.Dataset
      ny.bb
      url
      https://www.nyc.gov/assets/planning/download/zip/data-maps/open-data/nybb_16a.zip
      license
      NA
      attribution
      Department of City Planning (DCP)
      description
      The borough boundaries of New York City clipped to the shoreline at mean high tide for 2016.
      geometry_type
      Polygon
      details
      https://data.cityofnewyork.us/City-Government/Borough-Boundaries/tqmj-j8zm
      nrows
      5
      ncols
      5
      hash
      a303be17630990455eb079777a6b31980549e9096d66d41ce0110761a7e2f92a
      filename
      nybb_16a.zip
      members
      ['nybb_16a/nybb.shp', 'nybb_16a/nybb.shx', 'nybb_16a/nybb.dbf', 'nybb_16a/nybb.prj']
  • geodatasets.Bunch
    1 items
    • geodatasets.Dataset
      eea.large_rivers
      url
      https://www.eea.europa.eu/data-and-maps/data/wise-large-rivers-and-large-lakes/zipped-shapefile-with-wise-large-rivers-vector-line/zipped-shapefile-with-wise-large-rivers-vector-line/at_download/file
      license
      ODC-by
      attribution
      European Environmental Agency
      description
      Large rivers in Europe that have a catchment area large than 50,000 km2.
      geometry_type
      LineString
      details
      https://www.eea.europa.eu/data-and-maps/data/wise-large-rivers-and-large-lakes
      nrows
      20
      ncols
      3
      hash
      97b37b781cba30c2292122ba2bdfe2e156a791cefbdfedf611c8473facc6be50
      filename
      wise_large_rivers.zip
  • geodatasets.Bunch
    2 items
    • geodatasets.Dataset
      abs.australia
      url
      https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files/AUS_2021_AUST_SHP_GDA2020.zip
      license
      CC BY 4.0
      attribution
      Australian Bureau of Statistics (ABS)
      description
      Australia land polygon including Norfolk Island, the Territory of Christmas Island, and the Territory of Cocos (Keeling) Islands.
      geometry_type
      Polygon
      nrows
      2
      ncols
      7
      details
      https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files
      hash
      086752a6b0b3978247be201f02e02cd4e3c4f36d4f4ca74802e6831083b67129
      filename
      AUS_2021_AUST_SHP_GDA2020.zip
    • geodatasets.Dataset
      abs.australia_states_territories
      url
      https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files/STE_2021_AUST_SHP_GDA2020.zip
      license
      CC BY 4.0
      attribution
      Australian Bureau of Statistics (ABS)
      description
      Australian state and territory boundaries.
      geometry_type
      Polygon
      nrows
      10
      ncols
      9
      details
      https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files
      hash
      d9b7f735de6085b37414faf011f796dda3c7f768c55e9dce01f96e790f399a21
      filename
      STE_2021_AUST_SHP_GDA2020.zip
  • geodatasets.Bunch
    1 items
    • geodatasets.Dataset
      naturalearth.land
      url
      https://naciscdn.org/naturalearth/110m/physical/ne_110m_land.zip
      license
      CC0
      attribution
      Natural Earth
      description
      Land polygons including major islands in a 1:110m resolution.
      geometry_type
      Polygon
      details
      https://www.naturalearthdata.com/downloads/110m-physical-vectors/110m-land/
      nrows
      127
      ncols
      4
      hash
      1926c621afd6ac67c3f36639bb1236134a48d82226dc675d3e3df53d02d2a3de
      filename
      ne_110m_land.zip
chicago = gpd.read_file(geodatasets.get_path("geoda.chicago_commpop"))

groceries = gpd.read_file(geodatasets.get_path("geoda.groceries"))


chicago_shapes = chicago[['geometry', 'NID']]

chicago_names = chicago[['community', 'NID']]


chicago = chicago[['geometry', 'community']].to_crs(groceries.crs)
chicago.head()
geometry community
0 MULTIPOLYGON (((1181573.25 1886828.039, 118157... DOUGLAS
1 MULTIPOLYGON (((1186289.356 1876750.733, 11862... OAKLAND
2 MULTIPOLYGON (((1176344.998 1871187.546, 11763... FULLER PARK
3 MULTIPOLYGON (((1182322.043 1876674.73, 118232... GRAND BOULEVARD
4 MULTIPOLYGON (((1186289.356 1876750.733, 11862... KENWOOD
groceries.head()
OBJECTID Ycoord Xcoord Status Address Chain Category geometry
0 16 41.973266 -87.657073 OPEN 1051 W ARGYLE ST, CHICAGO, IL. 60640 VIET HOA PLAZA None MULTIPOINT ((1168268.672 1933554.35))
1 18 41.696367 -87.681315 OPEN 10800 S WESTERN AVE, CHICAGO, IL. 60643-3226 COUNTY FAIR FOODS None MULTIPOINT ((1162302.618 1832900.224))
2 22 41.868634 -87.638638 OPEN 1101 S CANAL ST, CHICAGO, IL. 60607-4932 WHOLE FOODS MARKET None MULTIPOINT ((1173317.042 1895425.426))
3 23 41.877590 -87.654953 OPEN 1101 W JACKSON BLVD, CHICAGO, IL. 60607-2905 TARGET/SUPER new MULTIPOINT ((1168996.475 1898801.406))
4 27 41.737696 -87.625795 OPEN 112 W 87TH ST, CHICAGO, IL. 60620-1318 FOOD 4 LESS None MULTIPOINT ((1176991.989 1847262.423))

17.10.1. Appending#

To append GeoDataFrames use pandas concat(). Keep in mind, that concatenated geometry columns need to have the same CRS.

joined_geometries = pd.concat([chicago.geometry, groceries.geometry])

joined_geometries
0      MULTIPOLYGON (((1181573.25 1886828.039, 118157...
1      MULTIPOLYGON (((1186289.356 1876750.733, 11862...
2      MULTIPOLYGON (((1176344.998 1871187.546, 11763...
3      MULTIPOLYGON (((1182322.043 1876674.73, 118232...
4      MULTIPOLYGON (((1186289.356 1876750.733, 11862...
                             ...                        
143               MULTIPOINT ((1171065.063 1899839.376))
144               MULTIPOINT ((1165217.798 1914159.975))
145               MULTIPOINT ((1166186.713 1883581.309))
146               MULTIPOINT ((1175778.816 1892214.445))
147               MULTIPOINT ((1185013.734 1832012.356))
Name: geometry, Length: 225, dtype: geometry
joined_geometries.iloc[9]
../_images/0737a57d1316efc939fec8627e5f791cab31c08b6274dc9d8bd25c524f3438f8.svg
douglas = chicago[chicago.community == 'DOUGLAS']

oakland = chicago[chicago.community == 'OAKLAND']

douglas_oakland = pd.concat([douglas, oakland])

douglas_oakland
geometry community
0 MULTIPOLYGON (((1181573.25 1886828.039, 118157... DOUGLAS
1 MULTIPOLYGON (((1186289.356 1876750.733, 11862... OAKLAND

17.10.2. Attribute Joins#

Attribute joins are accomplished using the merge() method. We will use chicago_shapes and chicago_names which both have the NID attribute:

chicago_shapes.head()
geometry NID
0 MULTIPOLYGON (((-87.60914 41.84469, -87.60915 ... 35
1 MULTIPOLYGON (((-87.59215 41.81693, -87.59231 ... 36
2 MULTIPOLYGON (((-87.6288 41.80189, -87.62879 4... 37
3 MULTIPOLYGON (((-87.60671 41.81681, -87.6067 4... 38
4 MULTIPOLYGON (((-87.59215 41.81693, -87.59215 ... 39
chicago_names.head()
community NID
0 DOUGLAS 35
1 OAKLAND 36
2 FULLER PARK 37
3 GRAND BOULEVARD 38
4 KENWOOD 39
chicago_shapes = chicago_shapes.merge(chicago_names, on='NID')

chicago_shapes.head()
geometry NID community
0 MULTIPOLYGON (((-87.60914 41.84469, -87.60915 ... 35 DOUGLAS
1 MULTIPOLYGON (((-87.59215 41.81693, -87.59231 ... 36 OAKLAND
2 MULTIPOLYGON (((-87.6288 41.80189, -87.62879 4... 37 FULLER PARK
3 MULTIPOLYGON (((-87.60671 41.81681, -87.6067 4... 38 GRAND BOULEVARD
4 MULTIPOLYGON (((-87.59215 41.81693, -87.59215 ... 39 KENWOOD
type(chicago_shapes)
geopandas.geodataframe.GeoDataFrame
chicago_shapes.plot("NID", legend=True)
<Axes: >
../_images/702d943f3e9ac1b12f91102715652d7a96e8094036e222b8bd4e9b283ccb8925.png

17.10.3. Spatial Joins#

In a spatial join, two geometry objects are merged based on their spatial relationship to one another.

GeoPandas provides two spatial-join functions:

  • GeoDataFrame.sjoin(): joins based on binary predicates (intersects, contains, etc.)

  • GeoDataFrame.sjoin_nearest(): joins based on proximity, with the ability to set a maximum search radius.

17.10.3.1. Binary predicate joins#

Binary predicate joins are available via GeoDataFrame.sjoin() which has two core arguments: how and predicate.

predicate

The predicate argument specifies how GeoPandas decides whether or not to join the attributes of one object to another, based on their geometric relationship. The default spatial index in GeoPandas currently supports the following values for predicate which are defined in the Shapely documentation:

  • intersects

  • contains

  • within

  • touches

  • crosses

  • overlaps

The following figures from the amazing pygis.io webiste provide an intuitive illustration of different predicate methods:

how

The how argument specifies the type of join that will occur and which geometry is retained in the resultant GeoDataFrame. It accepts the following options:

  • left: All features from the first or left GeoDataFrame are kept, regardless if the features meet the specified spatial relationship criteria for a join. As all attribute fields are combined, rows that do not have a match with the right dataset may have null values in the fields that originated from the right GeoDataFrame.

  • right: All features from the second or right GeoDataFrame are kept, regardless if the features meet the specified spatial relationship criteria for a join. As all attribute fields are combined, rows that do not have a match with the left dataset may have null values in the fields that originated from the left GeoDataFrame.

  • inner: Only features from both datasets that meet the spatial relationship for the joined are kept. The geometries from the first or left GeoDataFrame are used for the join.

The following figure from pygis.io shows how these three join options operate (note that the “Outer” join is not implemented in GeoPandas):

Let’s try this using the Chicago and Groceries GeoDataFrames:

chicago.head()
geometry community
0 MULTIPOLYGON (((1181573.25 1886828.039, 118157... DOUGLAS
1 MULTIPOLYGON (((1186289.356 1876750.733, 11862... OAKLAND
2 MULTIPOLYGON (((1176344.998 1871187.546, 11763... FULLER PARK
3 MULTIPOLYGON (((1182322.043 1876674.73, 118232... GRAND BOULEVARD
4 MULTIPOLYGON (((1186289.356 1876750.733, 11862... KENWOOD
groceries.head()
OBJECTID Ycoord Xcoord Status Address Chain Category geometry
0 16 41.973266 -87.657073 OPEN 1051 W ARGYLE ST, CHICAGO, IL. 60640 VIET HOA PLAZA None MULTIPOINT ((1168268.672 1933554.35))
1 18 41.696367 -87.681315 OPEN 10800 S WESTERN AVE, CHICAGO, IL. 60643-3226 COUNTY FAIR FOODS None MULTIPOINT ((1162302.618 1832900.224))
2 22 41.868634 -87.638638 OPEN 1101 S CANAL ST, CHICAGO, IL. 60607-4932 WHOLE FOODS MARKET None MULTIPOINT ((1173317.042 1895425.426))
3 23 41.877590 -87.654953 OPEN 1101 W JACKSON BLVD, CHICAGO, IL. 60607-2905 TARGET/SUPER new MULTIPOINT ((1168996.475 1898801.406))
4 27 41.737696 -87.625795 OPEN 112 W 87TH ST, CHICAGO, IL. 60620-1318 FOOD 4 LESS None MULTIPOINT ((1176991.989 1847262.423))

Let’s first plot the data:

ax = chicago.plot()
groceries.plot(ax = ax, color="red")
<Axes: >
../_images/22ee1c01b7b1c2d7f11526b5016fe892fa25ae0ec989ca47b831c64180a6528e.png

Now, we will use the groceries GeoDataFrame to find communities from the chicago GeoDataFrame that intersect with the geometries of each grocery store:

groceries_with_community = groceries.sjoin(chicago, how="inner", predicate='intersects')
groceries_with_community.head()
OBJECTID Ycoord Xcoord Status Address Chain Category geometry index_right community
0 16 41.973266 -87.657073 OPEN 1051 W ARGYLE ST, CHICAGO, IL. 60640 VIET HOA PLAZA None MULTIPOINT ((1168268.672 1933554.35)) 30 UPTOWN
1 18 41.696367 -87.681315 OPEN 10800 S WESTERN AVE, CHICAGO, IL. 60643-3226 COUNTY FAIR FOODS None MULTIPOINT ((1162302.618 1832900.224)) 73 MORGAN PARK
2 22 41.868634 -87.638638 OPEN 1101 S CANAL ST, CHICAGO, IL. 60607-4932 WHOLE FOODS MARKET None MULTIPOINT ((1173317.042 1895425.426)) 28 NEAR WEST SIDE
3 23 41.877590 -87.654953 OPEN 1101 W JACKSON BLVD, CHICAGO, IL. 60607-2905 TARGET/SUPER new MULTIPOINT ((1168996.475 1898801.406)) 28 NEAR WEST SIDE
4 27 41.737696 -87.625795 OPEN 112 W 87TH ST, CHICAGO, IL. 60620-1318 FOOD 4 LESS None MULTIPOINT ((1176991.989 1847262.423)) 39 CHATHAM

Question: If we use left as the value for how in the sjoin() method, how will the result be different?

17.10.3.2. Nearest joins#

Proximity-based joins can be done via GeoDataFrame.sjoin_nearest().

GeoDataFrame.sjoin_nearest() shares the how argument with GeoDataFrame.sjoin(), and includes two additional arguments: max_distance and distance_col.

max_distance

The max_distance argument specifies a maximum search radius for matching geometries. This can have a considerable performance impact in some cases. If you can, it is highly recommended that you use this parameter.

distance_col

If set, the resultant GeoDataFrame will include a column with this name containing the computed distances between an input geometry and the nearest geometry.