5. Xarray Fundamentals#

Attribution: This notebook is a revision of the xarray Fundamentals notebook by Ryan Abernathy from An Introduction to Earth and Environmental Data Science.

You can access this notebook in this GitHub repo.

Xarray is a Python library for working with n-dimensional data. An n-dimensional array is a great data model for dynamic phenomena like weather and climate data.

Here is an example xarray data structure for a weather forecast dataset (source: David Fastovich)

5.1. Xarray data structures#

Like Pandas, xarray has two fundamental data structures:

  • a DataArray, which holds a single multi-dimensional variable and its coordinates

  • a Dataset, which holds multiple variables that potentially share the same coordinates

5.1.1. DataArray#

A DataArray has four essential attributes:

  • values: a numpy.ndarray holding the array’s values

  • dims: dimension names for each axis (e.g., ('x', 'y', 'z'))

  • coords: a dict-like container of arrays (coordinates) that label each point (e.g., 1-dimensional arrays of numbers, datetime objects or strings)

  • attrs: an OrderedDict to hold arbitrary metadata (attributes)

Let’s start by constructing some DataArrays manually

import numpy as np
import xarray as xr
from matplotlib import pyplot as plt
da = xr.DataArray([9, 0, 2, 1, 0])
da
<xarray.DataArray (dim_0: 5)> Size: 40B
array([9, 0, 2, 1, 0])
Dimensions without coordinates: dim_0

A simple DataArray without dimensions or coordinates isn’t much use. We can add a dimension name…

da = xr.DataArray([9, 0, 2, 1, 0], dims=['x'])
da
<xarray.DataArray (x: 5)> Size: 40B
array([9, 0, 2, 1, 0])
Dimensions without coordinates: x

But things get more interesting when we add a coordinate:

da = xr.DataArray([9, 0, 2, 1, 0],
                  dims=['x'],
                  coords={'x': [10, 20, 30, 40, 50]})
da
<xarray.DataArray (x: 5)> Size: 40B
array([9, 0, 2, 1, 0])
Coordinates:
  * x        (x) int64 40B 10 20 30 40 50

This coordinate has been used to create an index, which works very similar to a pandas index. In fact, under the hood, xarray uses pandas index.

da.indexes
Indexes:
    x        Index([10, 20, 30, 40, 50], dtype='int64', name='x')

xarray has built-in plotting, like pandas.

da.plot(marker='o')
[<matplotlib.lines.Line2D at 0x13ebe25d0>]
../_images/717191effc5b294c210b367f0d5a0fb5730207affb6e290ba2f67080ee8fa147.png

5.1.2. Multidimensional DataArray#

If we are just dealing with 1D data, pandas and xarray have very similar capabilities. xarray’s real potential comes with multidimensional data.

In this example, we use real data from ocean profiling floats. ARGO floats are autonomous robotic instruments that collect Temperature, Salinity, and Pressure data from the ocean. ARGO floats collect one “profile” (a set of measurements at different depths or “levels”).

Each profile has a single latitude, longitude, and date associated with it, in addition to measurements at different levels.

Let’s start by using pooch to download the data files we need for this exercise. The following code will give you a list of .npy files that you can open in the next step.

Note

Here we are passing a hash to the retrieve method from pooch. Hash-based verification ensures that a file has not been corrupted by comparing the file’s hash value to a previously calculated value. If these values match, the file is presumed to be unmodified.

import pooch
url = "https://github.com/HamedAlemo/advanced-geo-python/raw/refs/heads/main/files/float_data_4901412.zip"
files = pooch.retrieve(url, processor=pooch.Unzip(), known_hash="2a703c720302c682f1662181d329c9f22f9f10e1539dc2d6082160a469165009")
files.sort()
files
['/Users/hamed/Library/Caches/pooch/6d802b1e083b1a058f3fbf91228d7758-float_data_4901412.zip.unzip/float_data/P.npy',
 '/Users/hamed/Library/Caches/pooch/6d802b1e083b1a058f3fbf91228d7758-float_data_4901412.zip.unzip/float_data/S.npy',
 '/Users/hamed/Library/Caches/pooch/6d802b1e083b1a058f3fbf91228d7758-float_data_4901412.zip.unzip/float_data/T.npy',
 '/Users/hamed/Library/Caches/pooch/6d802b1e083b1a058f3fbf91228d7758-float_data_4901412.zip.unzip/float_data/date.npy',
 '/Users/hamed/Library/Caches/pooch/6d802b1e083b1a058f3fbf91228d7758-float_data_4901412.zip.unzip/float_data/lat.npy',
 '/Users/hamed/Library/Caches/pooch/6d802b1e083b1a058f3fbf91228d7758-float_data_4901412.zip.unzip/float_data/levels.npy',
 '/Users/hamed/Library/Caches/pooch/6d802b1e083b1a058f3fbf91228d7758-float_data_4901412.zip.unzip/float_data/lon.npy']

We will manually load each of these variables into a numpy array. If this seems repetitive and inefficient, that’s the point! numpy itself is not meant for managing groups of inter-related arrays. That’s what xarray is for!

P = np.load(files[0])
S = np.load(files[1])
T = np.load(files[2])
date = np.load(files[3])
lat = np.load(files[4])
levels = np.load(files[5])
lon = np.load(files[6])

Let’s look at the shape of some of the variables:

print("Salinity shape is:", S.shape)
print("Levels shape is:", levels.shape)
print("Date shape is:", date.shape)
Salinity shape is: (78, 75)
Levels shape is: (78,)
Date shape is: (75,)

As expected, Salinity has dimensions of levels x date

Let’s organize the data and coordinates of the salinity variable into a DataArray.

da_salinity = xr.DataArray(S, dims=['level', 'date'],
                           coords={'level': levels,
                                   'date': date},)
da_salinity
<xarray.DataArray (level: 78, date: 75)> Size: 47kB
array([[35.6389389 , 35.51495743, 35.57297134, ..., 35.82093811,
        35.77793884, 35.66891098],
       [35.63393784, 35.5219574 , 35.57397079, ..., 35.81093216,
        35.58389664, 35.66791153],
       [35.6819458 , 35.52595901, 35.57297134, ..., 35.79592896,
        35.66290665, 35.66591263],
       ...,
       [34.91585922, 34.92390442, 34.92390442, ..., 34.93481064,
        34.94081116, 34.94680786],
       [34.91585922, 34.92390442, 34.92190552, ..., 34.93280792,
        34.93680954, 34.94380951],
       [34.91785812, 34.92390442, 34.92390442, ...,         nan,
        34.93680954,         nan]], shape=(78, 75))
Coordinates:
  * level    (level) int64 624B 0 1 2 3 4 5 6 7 8 ... 69 70 71 72 73 74 75 76 77
  * date     (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 2014-0...
da_salinity.plot()
<matplotlib.collections.QuadMesh at 0x13eccf8c0>
../_images/6b7b68a98785340f98d27fe1ce00361ef177bc5b801b808268017359c8555f00.png

Since we are working with ocean data, it’s helpful to plot the level in an increasing order from top to bottom:

da_salinity.plot(yincrease=False)
<matplotlib.collections.QuadMesh at 0x1485b7250>
../_images/3267e2a1ebdd7a1d2597ff47f147af2c1301668218d91aec6b4fa1e090743be3.png

Attributes can be used to store metadata. What metadata should you store? The CF Conventions are a great resource for thinking about climate metadata. Below we define two of the required CF-conventions attributes.

da_salinity.attrs['units'] = 'PSU'
da_salinity.attrs['standard_name'] = 'sea_water_salinity'
da_salinity
<xarray.DataArray (level: 78, date: 75)> Size: 47kB
array([[35.6389389 , 35.51495743, 35.57297134, ..., 35.82093811,
        35.77793884, 35.66891098],
       [35.63393784, 35.5219574 , 35.57397079, ..., 35.81093216,
        35.58389664, 35.66791153],
       [35.6819458 , 35.52595901, 35.57297134, ..., 35.79592896,
        35.66290665, 35.66591263],
       ...,
       [34.91585922, 34.92390442, 34.92390442, ..., 34.93481064,
        34.94081116, 34.94680786],
       [34.91585922, 34.92390442, 34.92190552, ..., 34.93280792,
        34.93680954, 34.94380951],
       [34.91785812, 34.92390442, 34.92390442, ...,         nan,
        34.93680954,         nan]], shape=(78, 75))
Coordinates:
  * level    (level) int64 624B 0 1 2 3 4 5 6 7 8 ... 69 70 71 72 73 74 75 76 77
  * date     (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 2014-0...
Attributes:
    units:          PSU
    standard_name:  sea_water_salinity

Now if we plot the data again, the name and units are automatically attached to the figure.

da_salinity.plot()
<matplotlib.collections.QuadMesh at 0x1486a5450>
../_images/46124a28c517ab4fa6b547874afd3c86f9ccabacbda6a7a1f140d7992b5eef8f.png

5.1.3. Datasets#

A Dataset holds many DataArrays which potentially can share coordinates. In analogy to pandas:

pandas.Series : pandas.Dataframe :: xarray.DataArray : xarray.Dataset

Constructing Datasets manually is a bit more involved in terms of syntax. The Dataset constructor takes three arguments:

  • data_vars should be a dictionary with each key as the name of the variable and each value as one of:

    • A DataArray or Variable

    • A tuple of the form (dims, data[, attrs]), which is converted into arguments for Variable

    • A pandas object, which is converted into a DataArray

    • A 1D array or list, which is interpreted as values for a one dimensional coordinate variable along the same dimension as it’s name

  • coords should be a dictionary of the same form as data_vars.

  • attrs should be a dictionary.

Let’s put together a Dataset with temperature, salinity and pressure all together

argo = xr.Dataset(
    data_vars={
        'salinity':    (('level', 'date'), S),
        'temperature': (('level', 'date'), T),
        'pressure':    (('level', 'date'), P)
    },
    coords={
        'level': levels,
        'date': date
    }
)
argo
<xarray.Dataset> Size: 142kB
Dimensions:      (level: 78, date: 75)
Coordinates:
  * level        (level) int64 624B 0 1 2 3 4 5 6 7 ... 70 71 72 73 74 75 76 77
  * date         (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 20...
Data variables:
    salinity     (level, date) float64 47kB 35.64 35.51 35.57 ... nan 34.94 nan
    temperature  (level, date) float64 47kB 18.97 18.44 19.1 ... nan 3.714 nan
    pressure     (level, date) float64 47kB 6.8 6.1 6.5 5.0 ... nan 2e+03 nan

What about lon and lat? We forgot them in the creation process, but we can add them after the fact.

argo.coords['lon'] = lon
argo
<xarray.Dataset> Size: 142kB
Dimensions:      (level: 78, date: 75, lon: 75)
Coordinates:
  * level        (level) int64 624B 0 1 2 3 4 5 6 7 ... 70 71 72 73 74 75 76 77
  * date         (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 20...
  * lon          (lon) float64 600B -39.13 -37.28 -36.9 ... -33.83 -34.11 -34.38
Data variables:
    salinity     (level, date) float64 47kB 35.64 35.51 35.57 ... nan 34.94 nan
    temperature  (level, date) float64 47kB 18.97 18.44 19.1 ... nan 3.714 nan
    pressure     (level, date) float64 47kB 6.8 6.1 6.5 5.0 ... nan 2e+03 nan

That was not quite right…we want lon to have dimension date:

del argo['lon']
argo.coords['lon'] = ('date', lon)
argo.coords['lat'] = ('date', lat)
argo
<xarray.Dataset> Size: 143kB
Dimensions:      (level: 78, date: 75)
Coordinates:
  * level        (level) int64 624B 0 1 2 3 4 5 6 7 ... 70 71 72 73 74 75 76 77
  * date         (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 20...
    lon          (date) float64 600B -39.13 -37.28 -36.9 ... -34.11 -34.38
    lat          (date) float64 600B 47.19 46.72 46.45 ... 42.6 42.46 42.38
Data variables:
    salinity     (level, date) float64 47kB 35.64 35.51 35.57 ... nan 34.94 nan
    temperature  (level, date) float64 47kB 18.97 18.44 19.1 ... nan 3.714 nan
    pressure     (level, date) float64 47kB 6.8 6.1 6.5 5.0 ... nan 2e+03 nan

5.1.4. Coordinates vs. Data Variables#

Data variables can be modified through arithmetic operations or other functions. Coordinates are always kept the same.

argo * 10000
<xarray.Dataset> Size: 143kB
Dimensions:      (level: 78, date: 75)
Coordinates:
  * level        (level) int64 624B 0 1 2 3 4 5 6 7 ... 70 71 72 73 74 75 76 77
  * date         (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 20...
    lon          (date) float64 600B -39.13 -37.28 -36.9 ... -34.11 -34.38
    lat          (date) float64 600B 47.19 46.72 46.45 ... 42.6 42.46 42.38
Data variables:
    salinity     (level, date) float64 47kB 3.564e+05 3.551e+05 ... nan
    temperature  (level, date) float64 47kB 1.897e+05 1.844e+05 ... nan
    pressure     (level, date) float64 47kB 6.8e+04 6.1e+04 ... 2e+07 nan

Clearly lon and lat are coordinates and not data variables.

The bold font in the representation above indicates that level and date are “dimension coordinates” (they describe the coordinates associated with data variable axes) while lon and lat are “non-dimension coordinates”. We can make any variable a non-dimension coordinate (using set_coords).

5.2. Selecting Data (Indexing)#

We can always use regular numpy indexing and slicing on DataArrays.

argo.salinity.shape
(78, 75)
argo.salinity[2]
<xarray.DataArray 'salinity' (date: 75)> Size: 600B
array([35.6819458 , 35.52595901, 35.57297134, 35.40494537, 35.45091629,
       35.50192261, 35.62397766, 35.51696014, 35.62797546, 35.52292252,
       35.47383118, 35.33785629, 35.81896591, 35.88694   , 35.90187836,
       36.02391815, 36.00475693, 35.94187927, 35.91583252, 35.86392212,
       35.81995392, 35.88601303, 35.95079422, 35.84091568, 35.87992477,
               nan, 35.92179108, 35.96979141, 36.0008316 , 35.98083115,
       35.92887878, 35.98091888, 35.9838829 , 36.01884842, 35.99092484,
       36.04689026, 36.04185867,         nan, 36.19193268, 36.22789764,
       36.20986557, 35.97589874, 36.2779007 , 36.25889969, 36.2418251 ,
       36.23685837, 36.19781876, 36.19785309, 36.17692184, 36.1048851 ,
       36.11392212, 36.09080505,         nan, 36.05675888, 35.93374634,
       36.04291534, 36.10183716, 35.97779083, 35.86592102, 35.87791824,
       35.88392258, 35.92078781, 35.88601303, 36.05178833, 35.85883713,
       35.94878769, 35.8938446 , 35.94379425, 35.90884018, 35.84893036,
       35.83496857, 35.71691132, 35.79592896, 35.66290665, 35.66591263])
Coordinates:
    level    int64 8B 2
  * date     (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 2014-0...
    lon      (date) float64 600B -39.13 -37.28 -36.9 ... -33.83 -34.11 -34.38
    lat      (date) float64 600B 47.19 46.72 46.45 46.23 ... 42.6 42.46 42.38
argo.salinity[2].plot()
[<matplotlib.lines.Line2D at 0x1487539d0>]
../_images/b32c640eebe8e791fac07be5d2cf74d2a2622708ac903283a24149e1909d5c55.png
argo.salinity[:, 10]
<xarray.DataArray 'salinity' (level: 78)> Size: 624B
array([35.47483063, 35.47483063, 35.47383118, 35.47383118, 35.47383118,
       35.47483063, 35.48183441, 35.47983551, 35.4948349 , 35.51083755,
       36.13380051, 36.09579849, 35.95479965, 35.93979645, 35.8958931 ,
       35.86388397, 35.87788773, 35.88188934, 35.90379333, 35.9067955 ,
       35.86588669, 35.8588829 , 35.86088181, 35.85188293, 35.85788345,
       35.82787323, 35.78786469, 35.73185349, 35.69784927, 35.67684174,
       35.677845  , 35.65784073, 35.64083481, 35.6238327 , 35.59682846,
       35.57782364, 35.56182098, 35.55781937, 35.52181625, 35.49881363,
       35.51381302, 35.49981308, 35.47280884, 35.47880936, 35.44780731,
       35.39379501, 35.35879135, 35.28778076, 35.21878052, 35.20677567,
       35.17777252, 35.15076828, 35.07276535, 35.01475525, 34.9797554 ,
       35.0117569 , 35.03975677, 35.05575562, 35.00975037, 34.96175385,
       34.96775055, 34.95075226, 34.93775177, 34.93375015, 34.93775558,
       34.9247551 , 34.92175674, 34.91975403, 34.91975403, 34.91975403,
       34.92176056, 34.92375946, 34.92575836, 34.92575836, 34.92475891,
       34.93076324, 34.92176437,         nan])
Coordinates:
  * level    (level) int64 624B 0 1 2 3 4 5 6 7 8 ... 69 70 71 72 73 74 75 76 77
    date     datetime64[ns] 8B 2012-10-22T02:50:32.006400
    lon      float64 8B -32.97
    lat      float64 8B 44.13
argo.salinity[:, 10:11].plot()
[<matplotlib.lines.Line2D at 0x1487f9950>]
../_images/d015bd64f7c55a71141ea02424ebcd7045ad7199fb3e6e0fdb75dc53a7e3591e.png

However, it is often more powerful to use xarray’s .sel() method to use label-based indexing.

argo.salinity.sel(level=[2, 5])
<xarray.DataArray 'salinity' (level: 2, date: 75)> Size: 1kB
array([[35.6819458 , 35.52595901, 35.57297134, 35.40494537, 35.45091629,
        35.50192261, 35.62397766, 35.51696014, 35.62797546, 35.52292252,
        35.47383118, 35.33785629, 35.81896591, 35.88694   , 35.90187836,
        36.02391815, 36.00475693, 35.94187927, 35.91583252, 35.86392212,
        35.81995392, 35.88601303, 35.95079422, 35.84091568, 35.87992477,
                nan, 35.92179108, 35.96979141, 36.0008316 , 35.98083115,
        35.92887878, 35.98091888, 35.9838829 , 36.01884842, 35.99092484,
        36.04689026, 36.04185867,         nan, 36.19193268, 36.22789764,
        36.20986557, 35.97589874, 36.2779007 , 36.25889969, 36.2418251 ,
        36.23685837, 36.19781876, 36.19785309, 36.17692184, 36.1048851 ,
        36.11392212, 36.09080505,         nan, 36.05675888, 35.93374634,
        36.04291534, 36.10183716, 35.97779083, 35.86592102, 35.87791824,
        35.88392258, 35.92078781, 35.88601303, 36.05178833, 35.85883713,
        35.94878769, 35.8938446 , 35.94379425, 35.90884018, 35.84893036,
        35.83496857, 35.71691132, 35.79592896, 35.66290665, 35.66591263],
       [35.7889595 , 35.67097855, 35.77500153, 35.4429512 , 35.44491196,
        35.55392838, 35.62497711, 35.59697342, 35.62897873, 35.52292252,
        35.47483063, 35.33785629, 35.81996536, 35.88993835, 35.90187836,
        36.02191925, 36.00475693, 35.93987656, 35.91583633, 35.86492538,
        35.81995773, 35.8870163 , 35.95079422, 35.84191513, 35.87992477,
                nan, 35.92179108, 35.96479034, 36.00683594, 35.98083115,
        35.9368782 , 35.99091721, 35.962883  , 35.98684311, 35.97792435,
        35.98988724, 35.97084808,         nan, 36.0339241 , 36.09988785,
        36.15286255, 35.98789215, 36.11489487, 36.24489975, 36.24282455,
        36.24985886, 36.19781876, 36.19885254, 36.17592239, 36.10388565,
        36.11192322, 36.09080505, 36.11088181, 36.05976105, 35.93475342,
        36.04491425, 36.08283615, 35.97679138, 35.86592102, 35.87791824,
        35.88392258, 35.92078781, 35.88500977, 36.0527916 , 35.87383652,
        35.9487915 , 35.8938446 , 35.9407959 , 35.97483444, 35.87393188,
        35.73094177, 35.73391342, 35.77991486, 35.87294388, 35.8139267 ]])
Coordinates:
  * level    (level) int64 16B 2 5
  * date     (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 2014-0...
    lon      (date) float64 600B -39.13 -37.28 -36.9 ... -33.83 -34.11 -34.38
    lat      (date) float64 600B 47.19 46.72 46.45 46.23 ... 42.6 42.46 42.38
argo.salinity.sel(level=2)
<xarray.DataArray 'salinity' (date: 75)> Size: 600B
array([35.6819458 , 35.52595901, 35.57297134, 35.40494537, 35.45091629,
       35.50192261, 35.62397766, 35.51696014, 35.62797546, 35.52292252,
       35.47383118, 35.33785629, 35.81896591, 35.88694   , 35.90187836,
       36.02391815, 36.00475693, 35.94187927, 35.91583252, 35.86392212,
       35.81995392, 35.88601303, 35.95079422, 35.84091568, 35.87992477,
               nan, 35.92179108, 35.96979141, 36.0008316 , 35.98083115,
       35.92887878, 35.98091888, 35.9838829 , 36.01884842, 35.99092484,
       36.04689026, 36.04185867,         nan, 36.19193268, 36.22789764,
       36.20986557, 35.97589874, 36.2779007 , 36.25889969, 36.2418251 ,
       36.23685837, 36.19781876, 36.19785309, 36.17692184, 36.1048851 ,
       36.11392212, 36.09080505,         nan, 36.05675888, 35.93374634,
       36.04291534, 36.10183716, 35.97779083, 35.86592102, 35.87791824,
       35.88392258, 35.92078781, 35.88601303, 36.05178833, 35.85883713,
       35.94878769, 35.8938446 , 35.94379425, 35.90884018, 35.84893036,
       35.83496857, 35.71691132, 35.79592896, 35.66290665, 35.66591263])
Coordinates:
    level    int64 8B 2
  * date     (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 2014-0...
    lon      (date) float64 600B -39.13 -37.28 -36.9 ... -33.83 -34.11 -34.38
    lat      (date) float64 600B 47.19 46.72 46.45 46.23 ... 42.6 42.46 42.38

Under the hood, this method is powered by using pandas’s powerful Index objects which means this method uses pandas’s (well documented) logic for indexing. For example, you can use string shortcuts for datetime indexes (e.g., ‘2000-01’ to select all values in January 2000). It also means that slices are treated as inclusive of both the start and stop values, unlike normal Python indexing.

argo.salinity.sel(level=2).plot()
[<matplotlib.lines.Line2D at 0x14d880550>]
../_images/b32c640eebe8e791fac07be5d2cf74d2a2622708ac903283a24149e1909d5c55.png
argo.salinity.sel(date='2012-10-22')
<xarray.DataArray 'salinity' (level: 78, date: 1)> Size: 624B
array([[35.47483063],
       [35.47483063],
       [35.47383118],
       [35.47383118],
       [35.47383118],
       [35.47483063],
       [35.48183441],
       [35.47983551],
       [35.4948349 ],
       [35.51083755],
       [36.13380051],
       [36.09579849],
       [35.95479965],
       [35.93979645],
       [35.8958931 ],
       [35.86388397],
       [35.87788773],
       [35.88188934],
       [35.90379333],
       [35.9067955 ],
...
       [35.00975037],
       [34.96175385],
       [34.96775055],
       [34.95075226],
       [34.93775177],
       [34.93375015],
       [34.93775558],
       [34.9247551 ],
       [34.92175674],
       [34.91975403],
       [34.91975403],
       [34.91975403],
       [34.92176056],
       [34.92375946],
       [34.92575836],
       [34.92575836],
       [34.92475891],
       [34.93076324],
       [34.92176437],
       [        nan]])
Coordinates:
  * level    (level) int64 624B 0 1 2 3 4 5 6 7 8 ... 69 70 71 72 73 74 75 76 77
  * date     (date) datetime64[ns] 8B 2012-10-22T02:50:32.006400
    lon      (date) float64 8B -32.97
    lat      (date) float64 8B 44.13

We can improve the plot by using the yincrease argument, and setting the variable that will be plotted on y axis:

argo.salinity.sel(date='2012-10-22').plot(y='level', yincrease=False)
[<matplotlib.lines.Line2D at 0x14d8ea210>]
../_images/23a636a10bc034bed346dd89fd9ab8949a5881e2567b0e44621c92fa1c8ce864.png

.sel() also supports slicing.

argo.salinity.sel(date=slice('2012-10-01', '2012-12-01'))
<xarray.DataArray 'salinity' (level: 78, date: 7)> Size: 4kB
array([[35.63097763, 35.52592468, 35.47483063, 35.33785629, 35.81896591,
        35.8889389 , 35.90187836],
       [35.63097763, 35.52292252, 35.47483063, 35.33685684, 35.81796646,
        35.88793945, 35.90187836],
       [35.62797546, 35.52292252, 35.47383118, 35.33785629, 35.81896591,
        35.88694   , 35.90187836],
       [35.62697601, 35.52192307, 35.47383118, 35.33785629, 35.81896591,
        35.89193726, 35.90187836],
       [35.62797546, 35.52192307, 35.47383118, 35.33785629, 35.81996536,
        35.88993835, 35.90187836],
       [35.62897873, 35.52292252, 35.47483063, 35.33785629, 35.81996536,
        35.88993835, 35.90187836],
       [35.62997818, 35.51892471, 35.48183441, 35.33785629, 35.81996536,
        35.88993835, 35.90187836],
       [35.63197708, 35.44991302, 35.47983551, 35.33785629, 35.81996536,
        35.89683914, 35.90187836],
       [35.63097763, 35.38090134, 35.4948349 , 35.33785629, 35.81896591,
        35.89583969, 35.90187836],
       [35.62697601, 35.58792114, 35.51083755, 35.33985519, 35.82497025,
        35.89683914, 35.90187836],
...
       [34.91690445, 34.92385483, 34.91975403, 34.91980362, 34.92385483,
        34.93680573, 34.93885422],
       [34.92190552, 34.92485428, 34.91975403, 34.92080688, 34.92485428,
        34.94480515, 34.9328537 ],
       [34.92390442, 34.92285538, 34.92176056, 34.92280579, 34.92985535,
        34.93280411, 34.92785645],
       [34.92390442, 34.92385483, 34.92375946, 34.92480469, 34.92685318,
        34.93780899, 34.92485428],
       [34.92390442, 34.92285538, 34.92575836, 34.92181015, 34.92085648,
        34.93680954, 34.92385483],
       [34.92590332, 34.9288559 , 34.92575836, 34.92181015, 34.92685318,
        34.93481064, 34.92585373],
       [34.92490387, 34.92785645, 34.92475891, 34.92781067, 34.93385696,
        34.93380737, 34.92385864],
       [34.92190552, 34.92385864, 34.93076324, 34.9268074 , 34.93585968,
        34.93481064, 34.92985916],
       [34.92090607, 34.92185974, 34.92176437, 34.9228096 , 34.93285751,
        34.93180847, 34.92786026],
       [        nan, 34.91985703,         nan, 34.92181015,         nan,
        34.92181015,         nan]])
Coordinates:
  * level    (level) int64 624B 0 1 2 3 4 5 6 7 8 ... 69 70 71 72 73 74 75 76 77
  * date     (date) datetime64[ns] 56B 2012-10-02T03:00:17.971200 ... 2012-12...
    lon      (date) float64 56B -34.46 -33.78 -32.97 -32.55 -32.43 -32.29 -32.17
    lat      (date) float64 56B 44.96 44.68 44.13 43.64 43.07 42.66 42.51
argo.salinity.sel(date=slice('2012-10-01', '2012-12-01')).plot()
<matplotlib.collections.QuadMesh at 0x14d974f50>
../_images/9b440334593e2e089fd4fc4acec22bf238f42a9a65a910ac66e24816f5b73579.png

.sel() also works on the whole Dataset

argo.sel(date='2012-10-22')
<xarray.Dataset> Size: 3kB
Dimensions:      (level: 78, date: 1)
Coordinates:
  * level        (level) int64 624B 0 1 2 3 4 5 6 7 ... 70 71 72 73 74 75 76 77
  * date         (date) datetime64[ns] 8B 2012-10-22T02:50:32.006400
    lon          (date) float64 8B -32.97
    lat          (date) float64 8B 44.13
Data variables:
    salinity     (level, date) float64 624B 35.47 35.47 35.47 ... 34.92 nan
    temperature  (level, date) float64 624B 17.13 17.13 17.13 ... 3.639 nan
    pressure     (level, date) float64 624B 6.4 10.3 15.4 ... 1.951e+03 nan
argo.sel(date = '2012-12-22')
<xarray.Dataset> Size: 624B
Dimensions:      (level: 78, date: 0)
Coordinates:
  * level        (level) int64 624B 0 1 2 3 4 5 6 7 ... 70 71 72 73 74 75 76 77
  * date         (date) datetime64[ns] 0B 
    lon          (date) float64 0B 
    lat          (date) float64 0B 
Data variables:
    salinity     (level, date) float64 0B 
    temperature  (level, date) float64 0B 
    pressure     (level, date) float64 0B 

5.3. Computation#

xarray DataArrays and Datasets work seamlessly with arithmetic operators and numpy array functions.

temp_kelvin = argo.temperature + 273.15
temp_kelvin.plot(yincrease=False)
<matplotlib.collections.QuadMesh at 0x14db3b250>
../_images/39154a850c6ab40fcf2fdf952888b81d074f10d80f3eb192cfd266b61e0cb3f8.png

We can also combine multiple xarray Datasets in arithmetic operations

g = 9.8
buoyancy = g * (2e-4 * argo.temperature - 7e-4 * argo.salinity)
buoyancy.plot(yincrease=False)
<matplotlib.collections.QuadMesh at 0x14dc260d0>
../_images/be91945463eec5ca76d6be6448669057c7dd3e1b47d74d5b8198e88c9844027f.png

5.4. Broadcasting, Aligment, and Combining Data#

5.4.1. Broadcasting#

Broadcasting arrays in numpy is a nightmare. It is much easier when the data axes are labeled!

This is a useless calculation, but it illustrates how performing an operation on arrays with different coordinates will result in automatic broadcasting.

argo.level
<xarray.DataArray 'level' (level: 78)> Size: 624B
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
       18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
       36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
       54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
       72, 73, 74, 75, 76, 77])
Coordinates:
  * level    (level) int64 624B 0 1 2 3 4 5 6 7 8 ... 69 70 71 72 73 74 75 76 77
argo.lat
<xarray.DataArray 'lat' (date: 75)> Size: 600B
array([47.187, 46.716, 46.45 , 46.23 , 45.459, 44.833, 44.452, 44.839,
       44.956, 44.676, 44.13 , 43.644, 43.067, 42.662, 42.513, 42.454,
       42.396, 42.256, 42.089, 41.944, 41.712, 41.571, 41.596, 41.581,
       41.351, 41.032, 40.912, 40.792, 40.495, 40.383, 40.478, 40.672,
       41.032, 40.864, 40.651, 40.425, 40.228, 40.197, 40.483, 40.311,
       40.457, 40.463, 40.164, 40.047, 39.963, 40.122, 40.57 , 40.476,
       40.527, 40.589, 40.749, 40.993, 41.162, 41.237, 41.448, 41.65 ,
       42.053, 42.311, 42.096, 41.683, 41.661, 41.676, 42.018, 42.395,
       42.532, 42.558, 42.504, 42.63 , 42.934, 42.952, 42.777, 42.722,
       42.601, 42.457, 42.379])
Coordinates:
  * date     (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 2014-0...
    lon      (date) float64 600B -39.13 -37.28 -36.9 ... -33.83 -34.11 -34.38
    lat      (date) float64 600B 47.19 46.72 46.45 46.23 ... 42.6 42.46 42.38
level_times_lat = argo.level * argo.lat
level_times_lat
<xarray.DataArray (level: 78, date: 75)> Size: 47kB
array([[   0.   ,    0.   ,    0.   , ...,    0.   ,    0.   ,    0.   ],
       [  47.187,   46.716,   46.45 , ...,   42.601,   42.457,   42.379],
       [  94.374,   93.432,   92.9  , ...,   85.202,   84.914,   84.758],
       ...,
       [3539.025, 3503.7  , 3483.75 , ..., 3195.075, 3184.275, 3178.425],
       [3586.212, 3550.416, 3530.2  , ..., 3237.676, 3226.732, 3220.804],
       [3633.399, 3597.132, 3576.65 , ..., 3280.277, 3269.189, 3263.183]],
      shape=(78, 75))
Coordinates:
  * level    (level) int64 624B 0 1 2 3 4 5 6 7 8 ... 69 70 71 72 73 74 75 76 77
  * date     (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 2014-0...
    lon      (date) float64 600B -39.13 -37.28 -36.9 ... -33.83 -34.11 -34.38
    lat      (date) float64 600B 47.19 46.72 46.45 46.23 ... 42.6 42.46 42.38
level_times_lat.plot()
<matplotlib.collections.QuadMesh at 0x14dcd7890>
../_images/bceccd88ed4e81e4887d0c4189fb2919b8763793d943ecdff1376cb00bb2250f.png

5.4.2. Alignment#

If you try to perform operations on DataArrays that share a dimension name, xarray will try to align them first. This works nearly identically to pandas, except that there can be multiple dimensions to align over.

To see how alignment works, we will create some subsets of our original data.

sa_surf = argo.salinity.isel(level=slice(0, 20))
sa_mid = argo.salinity.isel(level=slice(10, 30))

By default, when we combine multiple arrays in mathematical operations, xarray performs an “inner join”.

(sa_surf * sa_mid).level
<xarray.DataArray 'level' (level: 10)> Size: 80B
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
Coordinates:
  * level    (level) int64 80B 10 11 12 13 14 15 16 17 18 19

We can override this behavior by manually aligning the data:

sa_surf_outer, sa_mid_outer = xr.align(sa_surf, sa_mid, join='outer')
sa_surf_outer
<xarray.DataArray 'salinity' (level: 30, date: 75)> Size: 18kB
array([[35.6389389 , 35.51495743, 35.57297134, ..., 35.82093811,
        35.77793884, 35.66891098],
       [35.63393784, 35.5219574 , 35.57397079, ..., 35.81093216,
        35.58389664, 35.66791153],
       [35.6819458 , 35.52595901, 35.57297134, ..., 35.79592896,
        35.66290665, 35.66591263],
       ...,
       [        nan,         nan,         nan, ...,         nan,
                nan,         nan],
       [        nan,         nan,         nan, ...,         nan,
                nan,         nan],
       [        nan,         nan,         nan, ...,         nan,
                nan,         nan]], shape=(30, 75))
Coordinates:
  * level    (level) int64 240B 0 1 2 3 4 5 6 7 8 ... 21 22 23 24 25 26 27 28 29
  * date     (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 2014-0...
    lon      (date) float64 600B -39.13 -37.28 -36.9 ... -33.83 -34.11 -34.38
    lat      (date) float64 600B 47.19 46.72 46.45 46.23 ... 42.6 42.46 42.38

As we can see, missing data (NaNs) have been filled in where the array was extended.

From the documentation: Missing values (if join != 'inner') are filled with fill_value. The default fill value is NaN.

sa_surf_outer.plot(yincrease=False)
<matplotlib.collections.QuadMesh at 0x14ddd1450>
../_images/194f71f2171f1328bfddc22279f3e9b7199c2913f695bfe7ee489cc7cdb11775.png

We can also use join='right' and join='left'.

If we run our multiplication on the aligned data:

(sa_surf_outer * sa_mid_outer).level
<xarray.DataArray 'level' (level: 30)> Size: 240B
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
       18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29])
Coordinates:
  * level    (level) int64 240B 0 1 2 3 4 5 6 7 8 ... 21 22 23 24 25 26 27 28 29

5.4.3. Combing Data: Concat and Merge#

The ability to combine many smaller arrays into a single big Dataset is one of the main advantages of xarray. To take advantage of this, we need to learn two operations that help us combine data:

  • xr.contact: to concatenate multiple arrays into one bigger array along their dimensions.

  • xr.merge: to combine multiple different arrays into a Dataset.

First let’s look at concat. Let’s re-combine the subset data from the previous step.

sa_surf_mid = xr.concat([sa_surf, sa_mid], dim='level')
sa_surf_mid
<xarray.DataArray 'salinity' (level: 40, date: 75)> Size: 24kB
array([[35.6389389 , 35.51495743, 35.57297134, ..., 35.82093811,
        35.77793884, 35.66891098],
       [35.63393784, 35.5219574 , 35.57397079, ..., 35.81093216,
        35.58389664, 35.66791153],
       [35.6819458 , 35.52595901, 35.57297134, ..., 35.79592896,
        35.66290665, 35.66591263],
       ...,
       [35.78895187, 35.7829895 , 35.85100555, ..., 35.84291458,
        35.81891251, 35.7779007 ],
       [35.76794815, 35.75598526, 35.84500504, ..., 35.84891891,
        35.83391571, 35.76390076],
       [35.75194168, 35.71097565, 35.83100128, ..., 35.80690765,
        35.85292053, 35.75489807]], shape=(40, 75))
Coordinates:
  * level    (level) int64 320B 0 1 2 3 4 5 6 7 8 ... 21 22 23 24 25 26 27 28 29
  * date     (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 2014-0...
    lon      (date) float64 600B -39.13 -37.28 -36.9 ... -33.83 -34.11 -34.38
    lat      (date) float64 600B 47.19 46.72 46.45 46.23 ... 42.6 42.46 42.38

Warning

xarray will not check the values of the coordinates before concat. It will just stick everything together into a new array.

In this case, we had overlapping data. We can see this by looking at the level coordinate.

sa_surf_mid.level
<xarray.DataArray 'level' (level: 40)> Size: 320B
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
       18, 19, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
       26, 27, 28, 29])
Coordinates:
  * level    (level) int64 320B 0 1 2 3 4 5 6 7 8 ... 21 22 23 24 25 26 27 28 29
sa_surf_mid.sel(level=11)
<xarray.DataArray 'salinity' (level: 2, date: 75)> Size: 1kB
array([[35.95887756, 35.82500458, 35.70597839, 35.8350029 , 35.64592743,
        35.71894073, 35.76799011, 35.80199432, 35.7379837 , 35.79395294,
        36.09579849, 35.6628952 , 35.83797073, 35.89783859, 35.89887619,
        36.02391815, 36.00475693, 35.94387817, 35.90093613, 35.85692215,
        35.81895828, 35.86300659, 35.94979477, 35.84291458, 35.87992477,
        35.95978928, 35.92179108, 35.94578934, 36.04083633, 35.98183441,
        35.96687317, 35.99791718, 35.96387863, 35.9588356 , 35.95691681,
        35.91187668, 35.93383408,         nan, 36.06692123, 36.05187607,
        36.12983704, 36.01087952, 36.13287735, 36.02987671, 36.01980209,
        36.09484482, 36.02880096, 36.13484573, 36.15492249, 36.08387756,
        36.09292221, 36.09080505, 36.10988235, 36.05976105, 35.9327507 ,
        36.04291534, 36.01783371, 35.97879028, 35.86592102, 35.87792206,
        35.82791138, 35.89588547, 35.86800766, 36.05178833, 35.87783432,
        35.9337883 , 35.8938446 , 35.88488388, 35.95883179, 35.94283676,
        35.67092896, 36.02183533, 35.99683762, 35.9948349 , 35.96183395],
       [35.95887756, 35.82500458, 35.70597839, 35.8350029 , 35.64592743,
        35.71894073, 35.76799011, 35.80199432, 35.7379837 , 35.79395294,
        36.09579849, 35.6628952 , 35.83797073, 35.89783859, 35.89887619,
        36.02391815, 36.00475693, 35.94387817, 35.90093613, 35.85692215,
        35.81895828, 35.86300659, 35.94979477, 35.84291458, 35.87992477,
        35.95978928, 35.92179108, 35.94578934, 36.04083633, 35.98183441,
        35.96687317, 35.99791718, 35.96387863, 35.9588356 , 35.95691681,
        35.91187668, 35.93383408,         nan, 36.06692123, 36.05187607,
        36.12983704, 36.01087952, 36.13287735, 36.02987671, 36.01980209,
        36.09484482, 36.02880096, 36.13484573, 36.15492249, 36.08387756,
        36.09292221, 36.09080505, 36.10988235, 36.05976105, 35.9327507 ,
        36.04291534, 36.01783371, 35.97879028, 35.86592102, 35.87792206,
        35.82791138, 35.89588547, 35.86800766, 36.05178833, 35.87783432,
        35.9337883 , 35.8938446 , 35.88488388, 35.95883179, 35.94283676,
        35.67092896, 36.02183533, 35.99683762, 35.9948349 , 35.96183395]])
Coordinates:
  * level    (level) int64 16B 11 11
  * date     (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 2014-0...
    lon      (date) float64 600B -39.13 -37.28 -36.9 ... -33.83 -34.11 -34.38
    lat      (date) float64 600B 47.19 46.72 46.45 46.23 ... 42.6 42.46 42.38
plt.plot(sa_surf_mid.level.values, marker='o')
[<matplotlib.lines.Line2D at 0x14de99590>]
../_images/bf2d18ab5e25c9f18046d55743f07efd21f6e2b3f4d7dba02b420f6616369c6f.png

We can also concat data along a new dimension, e.g.

sa_concat_new = xr.concat([sa_surf, sa_mid], dim='newdim')
sa_concat_new
/var/folders/9h/7b1mvghj5nb_m84xcynqwjch0000gn/T/ipykernel_7284/1237396314.py:1: FutureWarning: In a future version of xarray the default value for join will change from join='outer' to join='exact'. This change will result in the following ValueError: cannot be aligned with join='exact' because index/labels/sizes are not equal along these coordinates (dimensions): 'level' ('level',) The recommendation is to set join explicitly for this case.
  sa_concat_new = xr.concat([sa_surf, sa_mid], dim='newdim')
<xarray.DataArray 'salinity' (newdim: 2, level: 30, date: 75)> Size: 36kB
array([[[35.6389389 , 35.51495743, 35.57297134, ..., 35.82093811,
         35.77793884, 35.66891098],
        [35.63393784, 35.5219574 , 35.57397079, ..., 35.81093216,
         35.58389664, 35.66791153],
        [35.6819458 , 35.52595901, 35.57297134, ..., 35.79592896,
         35.66290665, 35.66591263],
        ...,
        [        nan,         nan,         nan, ...,         nan,
                 nan,         nan],
        [        nan,         nan,         nan, ...,         nan,
                 nan,         nan],
        [        nan,         nan,         nan, ...,         nan,
                 nan,         nan]],

       [[        nan,         nan,         nan, ...,         nan,
                 nan,         nan],
        [        nan,         nan,         nan, ...,         nan,
                 nan,         nan],
        [        nan,         nan,         nan, ...,         nan,
                 nan,         nan],
        ...,
        [35.78895187, 35.7829895 , 35.85100555, ..., 35.84291458,
         35.81891251, 35.7779007 ],
        [35.76794815, 35.75598526, 35.84500504, ..., 35.84891891,
         35.83391571, 35.76390076],
        [35.75194168, 35.71097565, 35.83100128, ..., 35.80690765,
         35.85292053, 35.75489807]]], shape=(2, 30, 75))
Coordinates:
  * level    (level) int64 240B 0 1 2 3 4 5 6 7 8 ... 21 22 23 24 25 26 27 28 29
  * date     (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 2014-0...
    lon      (date) float64 600B -39.13 -37.28 -36.9 ... -33.83 -34.11 -34.38
    lat      (date) float64 600B 47.19 46.72 46.45 46.23 ... 42.6 42.46 42.38
Dimensions without coordinates: newdim

Note that the data were aligned using an outer join along the non-concat dimensions.

We can merge both DataArrays and Datasets:

xr.merge([argo.salinity, argo.temperature])
<xarray.Dataset> Size: 96kB
Dimensions:      (level: 78, date: 75)
Coordinates:
  * level        (level) int64 624B 0 1 2 3 4 5 6 7 ... 70 71 72 73 74 75 76 77
  * date         (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 20...
    lon          (date) float64 600B -39.13 -37.28 -36.9 ... -34.11 -34.38
    lat          (date) float64 600B 47.19 46.72 46.45 ... 42.6 42.46 42.38
Data variables:
    salinity     (level, date) float64 47kB 35.64 35.51 35.57 ... nan 34.94 nan
    temperature  (level, date) float64 47kB 18.97 18.44 19.1 ... nan 3.714 nan

If the data are not aligned, they will be aligned before merge. We can specify the join options in merge.

xr.merge([
    argo.salinity.sel(level=slice(0, 30)),
    argo.temperature.sel(level=slice(30, None))
])
/var/folders/9h/7b1mvghj5nb_m84xcynqwjch0000gn/T/ipykernel_7284/446608960.py:1: FutureWarning: In a future version of xarray the default value for join will change from join='outer' to join='exact'. This change will result in the following ValueError: cannot be aligned with join='exact' because index/labels/sizes are not equal along these coordinates (dimensions): 'level' ('level',) The recommendation is to set join explicitly for this case.
  xr.merge([
<xarray.Dataset> Size: 96kB
Dimensions:      (level: 78, date: 75)
Coordinates:
  * level        (level) int64 624B 0 1 2 3 4 5 6 7 ... 70 71 72 73 74 75 76 77
  * date         (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 20...
    lon          (date) float64 600B -39.13 -37.28 -36.9 ... -34.11 -34.38
    lat          (date) float64 600B 47.19 46.72 46.45 ... 42.6 42.46 42.38
Data variables:
    salinity     (level, date) float64 47kB 35.64 35.51 35.57 ... nan nan nan
    temperature  (level, date) float64 47kB nan nan nan nan ... nan 3.714 nan
xr.merge([
    argo.salinity.sel(level=slice(0, 30)),
    argo.temperature.sel(level=slice(30, None))
], join='left')
<xarray.Dataset> Size: 39kB
Dimensions:      (level: 31, date: 75)
Coordinates:
  * level        (level) int64 248B 0 1 2 3 4 5 6 7 ... 23 24 25 26 27 28 29 30
  * date         (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 20...
    lon          (date) float64 600B -39.13 -37.28 -36.9 ... -34.11 -34.38
    lat          (date) float64 600B 47.19 46.72 46.45 ... 42.6 42.46 42.38
Data variables:
    salinity     (level, date) float64 19kB 35.64 35.51 35.57 ... 35.83 35.76
    temperature  (level, date) float64 19kB nan nan nan ... 13.59 13.74 13.31

5.5. Reductions#

Similar to numpy, we can reduce xarray DataArrays along any number of axes:

argo.temperature.mean(axis=0)
<xarray.DataArray 'temperature' (date: 75)> Size: 600B
array([10.88915385, 10.7282564 , 10.9336282 , 10.75679484, 10.38166666,
       10.08619236, 10.58194804, 10.50066671, 10.56841555, 10.53705122,
       10.81131168, 11.01932052, 11.39205196, 11.40823073, 11.3642208 ,
       11.35821797, 11.39444157, 11.10514098, 11.02870125, 10.80894868,
       10.93076625, 11.01069231, 11.88195654, 10.57373078, 10.66359736,
       10.56573237, 11.08854546, 10.87921792, 11.21384416, 11.24991028,
       11.29168825, 11.06203848, 11.32829864, 11.20401279, 11.25300001,
       11.32106403, 11.40112986,  6.07053117, 11.7748052 , 11.7466795 ,
       12.03732056, 11.92653251, 12.08844156, 12.20543591, 12.23402598,
       12.03365387, 11.9919221 , 11.92087012, 11.84273071, 11.79711684,
       11.7895325 , 11.55385894, 11.19083561, 11.266282  , 11.0611948 ,
       11.0307179 , 11.06566232, 10.79799995, 10.787     , 10.41173077,
       10.44170127, 10.32649998, 10.38242857, 10.88080769, 10.86177921,
       10.98787178, 10.93602596, 10.73039743, 11.09251948, 10.93983334,
       10.65942862, 11.01814097, 11.21918184, 11.19080765, 11.13364934])
Coordinates:
  * date     (date) datetime64[ns] 600B 2012-07-13T22:33:06.019200 ... 2014-0...
    lon      (date) float64 600B -39.13 -37.28 -36.9 ... -33.83 -34.11 -34.38
    lat      (date) float64 600B 47.19 46.72 46.45 46.23 ... 42.6 42.46 42.38
argo.temperature.mean(axis=1)
<xarray.DataArray 'temperature' (level: 78)> Size: 624B
array([17.60172602, 17.57223609, 17.5145833 , 17.42326395, 17.24943838,
       17.03730134, 16.76787661, 16.44609588, 16.17439195, 16.04501356,
       15.65827023, 15.4607296 , 15.26114862, 15.12489191, 14.99133783,
       14.90160808, 14.81990544, 14.74535139, 14.66822971, 14.585027  ,
       14.49732434, 14.41904053, 14.35412163, 14.27102702, 14.19081082,
       14.11487838, 14.04347293, 13.98067566, 13.90994595, 13.83274319,
       13.76139196, 13.69836479, 13.62335132, 13.54185131, 13.46647295,
       13.39395946, 13.32541891, 13.25205403, 13.18131082, 13.10233782,
       12.89268916, 12.67795943, 12.4649189 , 12.2178513 , 11.98270268,
       11.1281081 , 10.80430666, 10.49702667, 10.1749066 ,  9.83453334,
        9.48625332,  9.19793334,  8.66010666,  8.12324001,  7.60221333,
        7.15289333,  6.74250667,  6.39543999,  6.04598667,  5.74538665,
        5.48913333,  5.26604001,  5.08768   ,  4.93479998,  4.77769334,
        4.65368   ,  4.54237334,  4.44274664,  4.35933333,  4.2653784 ,
        4.17290539,  4.08902703,  3.99864865,  3.92163514,  3.85617567,
        3.78916217,  3.72950001,  3.66207691])
Coordinates:
  * level    (level) int64 624B 0 1 2 3 4 5 6 7 8 ... 69 70 71 72 73 74 75 76 77

However, instead of performing reductions on axes (as in numpy), we can perform them on dimensions. This turns out to be a huge convenience:

argo_mean = argo.mean(dim='date')
argo_mean
<xarray.Dataset> Size: 2kB
Dimensions:      (level: 78)
Coordinates:
  * level        (level) int64 624B 0 1 2 3 4 5 6 7 ... 70 71 72 73 74 75 76 77
Data variables:
    salinity     (level) float64 624B 35.91 35.9 35.9 35.9 ... 34.94 34.94 34.93
    temperature  (level) float64 624B 17.6 17.57 17.51 ... 3.789 3.73 3.662
    pressure     (level) float64 624B 6.435 10.57 15.54 ... 1.95e+03 1.999e+03
argo_mean.salinity.plot(y='level', yincrease=False)
[<matplotlib.lines.Line2D at 0x14df25450>]
../_images/d360de57922fe65a928c69ee2cefe774c6ba87308a7fcb93bd7aee212e473c47.png
argo_std = argo.std(dim='date')
argo_std.salinity.plot(y='level', yincrease=False)
[<matplotlib.lines.Line2D at 0x14dfc0190>]
../_images/218d55cd292138aab61356a7d27dded9a0ec6bb549682decff568e1ff83f7856.png

5.5.1. Weighted Reductions#

Sometimes we want to perform a reduction (e.g. a mean) where we assign different weight factors to each point in the array. xarray supports this via weighted array reductions.

As a toy example, imagine we want to weight values in the upper ocean more than the lower ocean. We could imagine creating a weight array exponentially proportional to pressure as following:

mean_pressure = argo.pressure.mean(dim='date')
p0 = 250
weights = np.exp(-mean_pressure / p0)
weights.plot()
[<matplotlib.lines.Line2D at 0x14e016e90>]
../_images/b36765118b96c332276d068ce5fdd7f9aa855a2fd3a3be37590c515c3211b913.png

The weighted mean over the level dimensions is calculated as follows:

temp_weighted_mean = argo.temperature.weighted(weights).mean(dim='level')

Comparing to the unweighted mean, we see the difference:

temp_weighted_mean.plot(label='weighted')
argo.temperature.mean(dim='level').plot(label='unweighted')
plt.legend()
<matplotlib.legend.Legend at 0x13eccfe00>
../_images/1fa232417399d9f4ee585a9e81774dd4fa4fd0ed6764e432855780dde9ec2c16.png